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Abstract

Probabilistic programming is a paradigm that enables us to efficiently write probabilistic models

as program code that we can sample, infer underlying parameters and predict outcomes based

on complete or incomplete observations. Naturally, stochastic simulators, a special sub-class

of simulators containing random variables, internal inference procedures, and the simulation of

observations, are structurally rich probabilistic models. However, most simulators are not written

in the probabilistic programming paradigm, as they are written in arbitrary programming code.

This means that it is challenging to automatically update the variables in these simulators to

account for observations from conducted experiments, which limits the simulators’ use.

Furthermore, there are two components to a probabilistic programming system i) the language

and compilation procedure, ii) the inference procedures. These components can limit our ability

to compile particular classes of probabilistic models, such as models that contain mixtures

of parameter types, due to restrictions in the expressiveness of the language. Restrictions in

the expressivity of the language can also inhibit our ability to generate efficient inferences,

as this naturally influences the design of the probabilistic programming system and the set of

available inference backends. Creating probabilistic programming systems that are expressive

enough for different probabilistic models leads to the creation of many different probabilistic

programming systems, which is inefficient - it would be more efficient if we could repurpose

existing probabilistic programming systems.

In this thesis, we develop three pieces of original work through four papers. The first piece

of work describes how to extend differentiable first-order probabilistic programming systems to

perform statistically correct and computationally efficient inference on models with mixtures of

continuous and non-continuous parameters, without having to modify the underlying language,

or develop an entirely new probabilistic programming system. The second describes how to

translate real-world stochastic simulators written in arbitrary program languages to probabilistic

programming systems. And finally, in the third piece of work, we develop two new Bayesian

inference schemes to make inference more computationally and statistically efficient in nested
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models, models that contain probabilistic programs, within probabilistic programs, which arise

in many real-world stochastic simulators.
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to complete this P.h.D, and to Atılım Güneş Baydin and Tobias Kohn whose friendship and
mentorship have been critical. To Phil, for being full of energy and emotionally supportive, and
to Yee Whye for his mentorship and kindness. To Wendy Poole, whose support and conversations
have helped carry me through this P.h.D, helping me with admin, to life quandaries, and for
planning so many wonderful AIMS events, I will be forever thankful for her support and kind-
being. To my friends and lab colleagues, who have been incredibly supportive and some of the
best friends that I could have ever asked for, in no specific order; Adam Golínski, Triantafyllos
Afouras, Andrea Patané, Fabian Fuchs, Shuyu Lin, Xu Ji, Edward Wagstaff, Sasha Salter, Oliver
Bent, Yuan Zhou, Rob Zinkov, Christian Schroeder de Witt, David Martínez-Rubio, Mario
Lezcano-Casado, Mike Teng, Andrew Warrington, Tuan Anh Le, Prateek Gupta and members
of the OXCSML and Torr Vision groups. To my examiners, Luke Ong and John Winn for their
feedback and time. Finally, I am thankful to all the teachers that helped to shape me into the way
I am today, for my Auntie Val who provided a roof for me when I was homeless and for her love
and support growing up, my sister Charlie for all her inspiration, to my dad - even though we did
not see eye-to-eye I thank him for trying his best, to my partner Tse for all her love, inspiration
and care, EPSRC for funding this work and for Steve Roberts, because if he had not responded
to an e-mail in 2015 I would have never applied to the 2016 AIMS program.



vi



Publications

Portions of this thesis are based on previously published work by the author, performed in
collaboration with others. On a chapter-by-chapter basis:

• Chapter 4 Yuan Zhou*, Bradley J Gram-Hansen*, Tobias Kohn, Tom Rainforth, Hongseok
Yang, and Frank Wood. * Equal contribution, LF-PPL: A Low-Level First Order Proba-
bilistic Programming Language for Non-Differentiable Models, In Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019

• Chapter 5 comprises of two closely linked papers:
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1
Introduction

As we are born into the world, as we open our eyes and take in the surrounding sounds and

sights, we begin to form a simulation of the world around us, encoding a prior belief of what we

expect to observe. For example, we model the expected output from a set of electromagnetic

waves that interact with different surfaces, and as sounds propagate through our eardrums, our

brain creates a model for language and a model for how we should construct sounds. As we

progress through life and interact with the world around us, models appear everywhere, from

the dynamics of particle collisions to the beating of a heart. Some models are deterministic,

but many are stochastic and have known-unknown parameters that we need to infer, given our

observations. But, how do we model? How do we infer things about models? How can we use

our models to predict things? Bayesian reasoning, which provides a powerful mechanism for

modelling, such as learning from data, combined with a concept called probabilistic programming,

which provides a mechanism for automating Bayesian inference in such models, provides

an answer. At the intersection of computer science, engineering, and statistics, probabilistic

programming enables users to solve complex models in simple, autonomous ways, by combining

data-driven techniques with statistical modelling via sophisticated compilers and programming

languages. However, constructing models is still problematic, even if we have an abundance

of data, and reasoning about those models, given our world view, is even more complicated;

it’s an NP-hard problem [Roth, 1996].

1.1 Why model?
Models are humanity’s way of describing things and to construct models we take a series of

statements to form a description of that thing. The language we typically use to describe those

statements is mathematics, whether the thing is abstract, such as using algebraic geometry to

model the concept of space, or something more concrete such as describing the dynamics of
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particle interactions or forecasting the weather. Mathematics is a flexible tool for constructing

models, and if we want to automate the evaluation of mathematical statements, computers provide

a flexible framework to do so. By writing our models as program code we can automate the

simultion of the model under different parameterizations.

1.2 Why use simulators?
Simulators are models, and a special type of simulator that we shall explore throughout this

thesis is called the stochastic simulator, whose parameters are a mixture of deterministic and

stochastic variables. Stochastic simulators are forward-run probabilistic generative models and

can be designed to model everything from biological effects to physical events. In particular,

we will explore strategies and inference procedures that are designed to be applied to stochastic

simulators that model a specific event, such as the decaying of a particle or multiple parti-

cles [Gleisberg et al., 2008], or contain nested structures [Jäckel, 2002; Smith et al., 2008;

Stuhlmüller and Goodman, 2014].

Simulators are important due to the comprehensive knowledge that they contain, generated

through many millennia, centuries, decades, and years of extensive study and observation, which

means simulators provide a level of interpretability. This is particularly important when we need

to understand a given biological or physical process that we cannot treat as an unknown-oracle

that only provides answers, as is the case in much of deep-learning [Goodfellow et al., 2016].

In addition to this, they enable us to model complex phenomena that are not easily observed

or expensive to generate in a lab environment. This enables researchers to simulate their models

without the need for large, expensive particle-colliders (although we are happy that they exist),

and generate events for processes too rare to observe when running a single physical experiment.

Because simulators can be deployed on a computer, we can leverage thousands of computers

in parallel to simultaneously run multiple experiments, increasing our odds of observing the

initial conditions that led to the rare event.

Finally, as they are written as program code, we can run simulators anywhere where we

have access to some form of computation, from low-powered embedded computers and smart-

phones, to energy-hungry super-computers, as we shall demonstrate in Chapter 5. As stated

previously, the simulators explored in this thesis will all be stochastic simulators, which are

by design probabilistic models.
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1.3 Why write programs?
We write programs to automate procedures, such as switching off a light-emitting diode, or

executing trades as part of a complex financial trading system. Similar to modelling, writing

programs is centered on defining a model, whose dynamics and output are repeatable and

understandable. The program’s objective is to significantly reduce the manual time cost for the

given task and perform operations that may not be feasible for a given human. Furthermore, a

program is compact, re-usable, and can be deployed in different environments.

However, one problem with writing programs is choosing the framework and language

specification. Is speed an issue? If so, then the user may write their program in C++ [ISO, 1998],

but, if the user cares about readability and maintainability, then they may write their program in

Python [Van Rossum and Drake Jr, 1995]. These decisions have lasting consequences on how

the program can evolve, what frameworks the program can be run in, and the transferability of

the program1. Even though programs are “re-usable” in the sense that a user can run a program

repeatedly, it may not be possible to embed that program in an existing framework, or adaptively

modify that program when new information appears. Simulators are often coded in legacy

frameworks, making it difficult to embed them in modern systems and adaptively modify them

for new observations. This can be problematic as simulators can be tens, to millions of lines

of code, but as they grow in complexity, typically maintained by a small number of people, the

ability to proactively change them becomes more convoluted and challenging. This hinders the

user’s ability to include new physics into existing simulators, and/or, to infer properties about the

simulators, in terms of the initial states given some observations. Due to the complexity of some

simulators, it is difficult to understand the program’s structure, rendering aspects of the simulator

un-interpretable. We will present steps towards a solution to these challenges in Chapter 5.

1.4 What is Bayesian inference?
Bayesian modelling starts with a simple, yet powerful formula called Bayes’ theorem [Bayes,

1763]:

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x∫

p(y|x)p(x)dx (1.1)

where x represents our latent variables, our known-unknowns, and y represents our observations,

our known-knowns. When using Bayes’ theorem, there are two ways we can think about solving

1Containerised environments such as Docker and Singularity have made this less of an issue.
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our problem; one is forward probabilities, the other is inverse probabilities [MacKay, 1998, Chap-

ter 2].

Forward probability problems involve a generative model that describes a process that is

assumed to give rise to some observations; the task is to compute the probability distribution or

expectation of some quantity that depends on the data, that is p(y|x). Like forward probability

problems, inverse probability problems involve a generative model of a process. Instead of

computing the probability distribution of some quantity produced by the process, we compute the

conditional probability of one or more of the latent variables in the process, given the observed

variables, that is p(x|y).

y

x

y

x

Figure 1.1: Left: The forward
probability.
Right: The inverse probability.
The grey-circles represent obser-
vations and the non-grey circles
represent known-unknown quan-
tities.

Figure 1.1 provides the directed acyclic graphical models for

each, in the simplest case, where we have two random variables

x and y that have a directional relationship between one another.

The stochastic simulators that we will explore in this thesis

are generative models, probabilistic model that contain random

variables to simulate a process and define a joint density p(x,y).

When the simulator is run forward we generate observations

which should be consistent with our measured observations of

a potentially complex procedure, but this is often not the case, as

models by construction are imperfect. To optimally determine

the parameters that would lead to the ground-truth observations, instead of relying on heuristic

values, we need to “invert” the simulator to determine the form of the latent variables that would

generate such observations. One way of doing this is via statistical inference procedures, but

doing this automatically for different types of stochastic simulators is challenging, and led to

the developments presented in Chapters 4, 5 and 6.

As a conceptual example of Bayes theorem, imagine we have a worn coin and want to

write a simulator to model this worn coin - so that we don’t have keep performing the flipping

manually. To do this we would need to build an accurate simulator, which means that we

have to invert the flipping of the coin to determine how biased it is. Provided we have some

experimental observations, Bayesian statistics provides a solution. We begin to generate our

experimental observations and flip the coin to observe each outcome, for the first we observe
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Heads (H), y1 = H and for the next we observe Tails (T), y2 = T . With these observations we

begin to hypothesize that our coin is not biased. In fact, we make several more observations,

y1:10 = HTHHHTTTTH , it still looks unbiased, but after a hundred observations we see we

observe only thirteen-tails and eighten-seven heads, and so our beliefs begin to change.

Bayes’ theorem provides a useful framework to capture that change in belief as we update

our view of the world, based on the data we gather, which could be through simulation, or

experiment. However, we need a starting point for our beliefs, the prior. In the case where

all outcomes are equally probable, that is, we have no additional information that advantages

one outcome over another, we state that we have a Uniform, U(a, b) prior over the range of

possible values, with a, representing the lowest outcome and, b, the highest. We call this a

non-informative prior. In many cases, we have prior information about our model and the

problem it specifies, such as the coin is worn. We will see the effects of informative priors in

Section 2.4. Next, we need to construct a likelihood, that will tell us how likely a given set of

variables are for some data, p(x|y), or, how likely the data is, given some choice of variables

p(y|x), dependent upon whether we are calculating forward, or inverse probabilities. In either

case, how we construct both the likelihood and the prior is subjective. Hence the phrase, all

models are wrong, but some are just less wrong [Box, 1976].

1.5 Can we draw inferences from simulators using program-
ming constructs?

Simulators are usually run forward and generate data relating to that forward-generating process.

To draw inferences from simulators we need to extract information from the simulator source

code, so that the model structure and stochastic variables in the simulator can be found.

One such paradigm that enables us to draw inferences and extract this information directly

from source code is probabilistic programming. Probabilistic programming lies at the intersection

of machine learning, programming languages and statistics, and provides an automated way to

model and extract inferences from probabilistic models utilising Bayesian statistics. It provides us

with a mechanisms of drawing inferences from simulators rather than just running them forwards.

It allows us to ask questions like “what is the implied distribution of x given that y = c?”, that

is conditioning to only produce outputs consistent with certain restrictions. This means that

the system can automatically calibrate the underlying simulator parameters via conditioning

constructs, enabling us to tune the simulator output so that it matches our observations in the
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physical world. Furthermore, probabilistic programming systems dramatically reduce both the

amount of code that has to be written and the expertise required to perform complex statistical

inference procedures in simulators [Gordon et al., 2014; Minka et al., 2014; Pfeffer, 2001;

Rainforth, 2018a; Wood et al., 2014], as the probabilistic programming backend deals with this.

Naturally, as probabilistic programs are probabilistic models, they have a density p(x,y),

in terms of the latent variables, the samples, x and observations, the data, y, which in the

context of probabilistic programs we refer to as the program density. Thus, simulators are

a natural fit for probabilistic programming systems, as stochastic simulators are probabilistic

programs. In order for the system to extract a program density, which is required for inference,

probabilistic programming system use a combination of sophisticated compilers and coroutines

to transform the program to different representations; the probabilistic and computational

graphical model. Once constructed, the program density can be extracted, which can then

be used with the inference back-end.

Probabilistic programming systems come in many different designs and flavours, but fun-

damentally have two parts: a language semantics and a set of generalised inference procedures

that can run automatically on models specified in the language of the probabilistic programming

system [Ackerman et al., 2019; Bingham et al., 2019; Goodman and Stuhlmüller, 2014; Goodman

et al., 2008; Le et al., 2017; Li and Russell, 2013; Pfeffer, 2001; Rainforth, 2018a].

The probabilistic programming systems that we will explore in this thesis leverage Bayesian

statistics and use modified inference algorithms that can be applied in generalised ways, enabling

inference in different classes of probabilistic models in an autonomous fashion. This relationship

between the inference procedures and probabilistic programming systems often means that

the language of a system is entirely built around the specification of the inference procedures

implemented in the system [Carpenter et al., 2017; Lunn et al., 2000; Spiegelhalter et al., 1996],

which means when a user writes a simulator in the syntax of a probabilistic programming system,

the system can place guarantees on the generated inferences. In other systems, the model is the

centerpiece [Bingham et al., 2019; Cusumano-Towner et al., 2019; Goodman et al., 2008; Le

et al., 2017; Wood et al., 2014], and the user is provided arbitrary freedom in the models that

they can write, but do not get strong guarantees on the inference results.
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1.6 Why not write simulators as programs?
Given probabilistic programming and Bayesian inference, one may ask, why in machine learning

do we not solve all simulators in the probabilistic programming paradigm? There are two main

reasons for this. The first is that inference - computing the posterior distribution in Equation 1.1

— can only be performed exactly and efficiently in a very small set of simulators: simulators

where the posterior p(x,y) form certain types of graphical models [Murphy, 2012, Chapter 20]

and simulators where a conjugacy relationship occurs between the prior and likelihood function,

which leads to a posterior that has the same functional form as the prior. Outside of this small

set of models, exact inference in complex models often requires evaluating intractable integrals

or NP-hard computation requiring enumeration of exponentially large combinatorial spaces.

This requires one to resort to approximate Bayesian inference schemes, some of which lead

to the true answer in the limit as the number of samples tends to infinity; others only lead to

a bounded approximation. Which methods perform well is often model-dependent, leading to

many difficulties when trying to design probabilistic programming systems. It can cause some

languages to be restrictive, but models compiled in those languages will have certain statistical

guarantees, compared to languages that allow for more model expressivity that make trade-offs in

inference efficiency. We develop solutions to this in Chapters 4 and 6, to extend the model space

of existing probabilistic programming systems so that they can perform efficient, automated

Bayesian inference without having to be rebuilt or made obsolete.

Second, the specification of simulators in arbitrary languages that are not written in prob-

abilistic programming systems is a significant practical hurdle. To circumvent this issue, we

develop a compilation procedure and a set of coroutines that connects simulators written in

non-probabilistic programming languages to probabilistic programming systems, Chapter 5.

This enables the simulator to be evaluated and run as if it had been written as a probabilistic

program in a probabilistic programming system, allowing us to perform inference in the given

simulator and removing the need to re-write the simulator in the probabilistic programming

system, and the need to define input parameters heuristically.

1.7 Overview of thesis
Throughout this thesis we shall provide innovative solutions to the challenges outlined above

by developing tools to aid engineers and scientists via new compilation and inference schemes.
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In Chapter 2 we explore the different types of probabilistic programming systems and the role

compilation plays in converting probabilistic programs into graphical models that enable automat-

able inference. Next, in Chapter 3 we explore several Monte Carlo based-inference schemes

that are utilised throughout this thesis, we also define the program density of a probabilistic

program and introduce purpose built inference engines for probabilistic programming systems

that leverage the forward execution of programs. Then we shall move on to the core contributions

Chapters 4, 5 and 6. In Chapter 4, we develop an innovative compiler that enables constrained-

by-inference probabilistic programming systems to be more liberal in the class of simulators

they can operate over, without having to be redesigned, or sacrifice inference efficiency. In

Chapter 5, we develop a new compilation process and a series of coroutines for transforming

real-world simulators that were not directly amenable to inference into computational graphical

models that are amenable to inference in probabilistic programming systems, without having to

rewrite the existing, often complex, simulator inside of the probability programming system. In

Chapter 6, we introduce two new Bayesian inference procedures to perform efficient inference

on a special class of stochastic simulators that have nested internal inference procedures. And

finally, we finish with a set of concluding remarks, Chapter 7.



2
Probabilistic Programming and Simulation

Simulators arise in all aspects of life, from complicated simulators that model epidemics and

fundamental physics, to seemingly simple simulators that model the flip of a coin. However,

designing and building simulators poses many challenges. First, the simulator needs defining,

which requires us to understand how a set of latent variables x, map to a set of observations y.

Some of these relationships may be known, though we must make an educated guess about this

mapping in many instances. Second, we have to determine how we will design our simulator;

what language will our simulator be written in? Will there be stochastic choices, or will everything

be deterministic? Design decisions like this will have direct implications for the types of function

mappings allowed within the simulator, directly affecting the set of inference strategies that can be

deployed. Finally, how do we infer the latent variables of the simulator, given new observations?

Our framework for constructing and inferring properties of simulators will utilise probabilistic

programming frameworks [Bingham et al., 2019; Carpenter et al., 2017; Minka et al., 2014;

Pfeffer, 2005; Rainforth, 2018a; Tran et al., 2017; Van de Meent et al., 2018] that use Bayesian

inference [Bayes, 1763; Gelman et al., 2013]. While these are not the only frameworks that

exist [Milch et al., 2005], they are flexible and convenient tools for solving statistical problems. In

particular, probabilistic programming provides a way of quickly prototyping a model in program

code and extracting answers at the click of a button using Bayesian methodology.

2.1 Probabilistic Programming
When a program such as a simulator is executed in the standard programming paradigm, it runs

forward using its input parameters and maps those inputs to some outputs. In contrast, statistical

inference runs backwards, it takes the output and infers what input led to that output. In an

automated way, probabilistic programming links the forward execution to the inference procedure

that is run backwards. This enables the users to accelerate iteration over probabilistic models, as
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code is easier to read and write than math, and removes the requirement to write the complicated

inference back-ends as the inference methods are intertwined with the probabilistic programming

system, reducing the technical barrier to probabilistic modelling. Probabilistic programming is

able to automate this cycle by turning inference procedures into compiler optimisations. Thus,

the semantics of the language determines the expressivity of the system i.e. what simulators

can be written, and the inference engines that can be deployed in the system. As such, the

work of this thesis focuses on the development of new compilers, coroutines and inference

procedures that enable further automation, while providing greater efficiency in terms of the

statistical inference performed and the ability to re-use existing simulators, and probabilistic

programming systems. Throughout this thesis, when we refer to a program in the context of

a probabilistic programming system, we implicitly imply a stochastic simulator that has some

joint density, unless otherwise stated.

As stated previously, a key component of a probabilistic programming system is the language.

Probabilistic programming languages (PPLs) extend general-purpose programming languages

with constructs to perform sampling and conditioning of random variables [Gordon et al., 2014;

Van de Meent et al., 2018]. The purpose of the PPLs is to decouple model specification from

inference: a probabilistic program is implemented by the user as a regular program in the host

programming language, specifying a simulator that produces samples from a generative process at

each execution. In other words, the program produces samples from a joint distribution p(x,y) =

p(y|x)p(x), which the program implicitly defines. The program is then executed using a general-

purpose inference engine available within the probabilistic programming system. The compiler

and coroutines of a PPL check that the model adheres to the semantics and expressivity of the PPL,

while also being a valid program in the host language. Then, inference is performed to obtain

p(x|y), the posterior distribution of latent variables x conditioned on the observed variables y.

In certain types of PPLs we must restrict certain functions to inhibit recursion, leading to

two distinct groups of PPLs. In one group, we have the first-order probabilistic programming

languages (FOPPLs) [Staton et al., 2016; Van de Meent et al., 2018], such as BUGS [Spiegelhalter

et al., 1996] and Stan [Carpenter et al., 2017] that have purpose-built compilers that ensure

the models written in the system only compile if they are valid directed acyclic graphical

models [Koller et al., 2009] and as such provide computational and statistical guarantees on the

generated inferences. In the second group, we have the universal probabilistic programming
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languages (UPPLs) [Staton, 2017] such as Church [Goodman et al., 2008], Anglican [Wood

et al., 2014] and PyProb [Baydin et al., 2019b; Le et al., 2017] which introduce no explicit

constraints on the models that can be expressed, and are universal in the sense that they can

be used to specify any computable distribution.

2.1.1 First-order probabilistic programming languages

First-order probabilistic programming languages (FOPPLs) are probabilistic programming

languages that are restricted to only allowing first-order functions [Van de Meent et al., 2018],

which means that functions cannot accept other functions as arguments, nor allow non-terminable

recursion. To impose such restrictions, the PPL is usually a reduced subset of the full-language

with added constructs, such as sample and observe, which represent sampling from a dis-

tribtuion and conditioning on observations. By restricting functions to be first-order certain

types of programs that depend on potentially infinite recursion, and, or higher-order functions,

which is to say that user-defined functions cannot accept other functions as arguments, cannot be

compiled in a FOPPL. Consider the problem of drawing a sample from a geometric distribution,

representing the number of failures before the first success in a sequence of Bernoulli trials. Most

probabilistic programming languages that support discrete latent variables would already include

a geometric random primitive, or if not, one could be created via tools for implementing new

random primitives. However, what if we want to implement this not as a random primitive, but

as a program in our probabilistic language? The direct way of sampling this is to repeatedly

sample from a Bernoulli distribution until success, Program 2.6, and return the total number

of trials required. This could be expressed as:
def sample_geometric(p):
if coin_flip(p):

return 0
else:
return sample_geometric(p) + 1

Where Program 2.6, the coin-flip function, is a constructor for a Bernoulli distribution over

the values true and false. This function recurses to an arbitrary depth: although it halts with

probability 1 for any p ∈ (0, 1], one could not construct a finite graph outlining the computation

for all possibilities. Even familiar simple distributions are sufficiently complex that we are

unable to implement them in first-order probabilistic programming languages using only smaller

building-blocks; in contrast, universal languages in theory only require a single primitive (for

example, uniform on the [0, 1] interval) to be able to draw samples from any such distribution.
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Furthermore, the position of the observation variables need to be provided at compile time,

because when the compiler constructs the computational graph it must be able to determine the

structure of the program in order to leverage efficient inference schemes, as if this information

was not known then the directional relationships between the x’s and y’s could not be established

and as such a directed acyclic graph could not be constructed. Although the values of the

observations can be added dynamically during runtime. Each of these limitations restricts the

model expressivity of FOPPL-based probabilistic programming systems. These restrictions do

have advantages, as they enable inference schemes to be implemented in an efficient manner

via compiler optimisations as programs that compile in a FOPPL have joint densities p(x,y)

that correspond directly to directed acyclic graph models, for which there exists efficient

statistical inference algorithms that converge quickly to the correct posterior distribution [Geyer,

1992; Koller et al., 2009].

2.1.2 Universal probabilistic programming languages

In contrast to FOPPLs, universal probabilistic programming languages (UPPLs) allow for the

expression of unrestricted probabilistic models [Borgström et al., 2016; Goodman et al., 2008;

Le et al., 2017; Wood et al., 2014]. They can express models with an unbounded number of

random variables, which means that random variables are not fixed statically and can be created

dynamically during execution. This flexibility means that UPPLs can represent any computable

distribution [Borgström et al., 2016], as there are no restrictions on recursion, stochastic control

flow and the type of allowable functions. As functions are first-class values in UPPLs, they

can define higher-order functions, functions that accept other functions as arguments. Thus any

computable program can be run in a UPPL. This means any simulator of arbitrary complexity

that can be defined in a Turing-complete programming language can be evaluated in a UPPL,

making them powerful tools for modelling. We will see an example of this in Chapter 5. Because

they allow for infinite recursion, these systems facilitate simulators that contain different layers

of nesting, which arises in a large number of real-world simulators, where agents reason about

other agents decisions; based on the perceived decision an agent will take, given an initial

action [Rainforth et al., 2018; Smith et al., 2008; Stuhlmüller and Goodman, 2014]. However,

performing inference in nested models is challenging, as even though the distribution implied

by any nested simulator always has a direct form that could be written down as an unnested

simulator, it is doubly intractable [Murray et al., 2006] and the program that expresses it might
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be infinitely complicated, that is it is non-terminable in a finite amount of time.

Thus, even though nested simulators can be written in UPPLs, developing efficient inference

schemes for such simulators is non-trivial [Rainforth, 2018b; Rainforth et al., 2018] and in Chap-

ter 6 we develop two efficient Bayesian inference schemes for high-dimensional nested simulators.

In all languages presented in this thesis, the constructs sample and observe will possess

a special semantic meaning that will play a vital role in the program execution, as they will

act as labels for the random variables in the given simulator. We call these labels “addresses”

and will discuss them in more detail in Section 2.3.1.

2.2 Compiling a probabilistic program
For the purpose of demonstration we will introduce a simple FOPPL utilising both the Clo-

jure [Hickey, 2008] and Python [Van Rossum and Drake Jr, 1995] programming languages

and includes standard language features such as conditional statements (e.g. if), assignment

(e.g. (let [a 2]) in Clojure is equivalent to a = 2 in Python etc.), primitive operations

(e.g. +,-,*,/ where a+ b is the Pythonic expression and the equivalent Clojure expression is

(+ a b) etc.), and user-defined functions, in Python def and in Clojure fn which are restricted

to be first order. Here, (fn [args] body) takes a set of arguments and a set of procedures in

the body to evaluate during the forward execution, see Programs 2.1 and 2.8 for examples of

simple FOPPL programs.

Non-probabilistic languages can be either compiled, whereby high-level source code is converted

to a lower level language (e.g. byte-code) before being evaluated, or interpreted, whereby an

interpreter reads the program and directly evaluates it based on the language semantics. The

same is true for PPLs, for which compilation usually comprises of converting the program, P ,

to a model artifact in a host language in which the inference algorithms are written.

viding a common representation of simulators. We start by taking a program P as input, this

could be either a Clojure, or Python program for our system, Chapter 4, and through a Linearised

Intermediate Representation (LIR) we internally construct the probabilistic graph of the program,

G(V,E), consisting of vertices, V and arcs, E, from which we can extract the computational

graph and program density for the back-end inference engines. Where the LIR is a reduced set of

statements which suffice to express any graphcal model. Each vertex of the LIR denotes a sample

or observe statement, of which only a finite and fixed number can occur in a FOPPL, in more

expressive languages there are no restrictions. The arcs of the LIR define both the probabilistic
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and conditional dependencies of the program variables. We can express a graphical model as a

linear program, comprising three types of statements, sample and observe , and if we have

conditioning, then the third type of statements are conditional statements, i.e. if statements.

Figure 2.1 shows an example hierarchical structure of a probabilistic program compiler.

Python, or Clojure 
Program

    LIR

Graphical & 
Computational 

Model

Python & Clojure 
Parser 

   Inference engine

Figure 2.1: The compiler uses several passes to transform a probabilistic FOPPL Clojure / Python program
to a graphical and computational model. The computational model is then used as an interface to connect
with an inference engine.

A sampling statement has the form (let [xi sample(d, e1, ... , en)]), where a

sample from the distribution d is taken and stored under the name xi. The sample construct

represents a latent variable. It accepts a distribution object d, which must evaluate to a distribution

object and a set of expressions e representing the distribution inputs, i.e. x ∼ Uniform(0, 1)

is represented as sample(uniform 0 1), and returns a value that is a sample from this

distribution object. Distributions are constructed using primitives provided by the FOPPL.

The distribution can depend deterministically on any previously sampled variable xk (k < i)

via the expression ei. The second type of statements are conditioning statements, which have

the form observe( (d e1, ... , en)c). In contrast to the sample construct, observe

factors the density according to the distribution d, with all parameters e1,..., en and the

observed data c and represents an observed random variable. It accepts an argument d, which

must evaluate to a distribution, and conditions on the next argument c, which is the value
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of the random variable, our observation y. For example, (observe (normal x 1.0)2) is

equivalent to p(y|0, 12) = Normal(y = 2|µ = x, σ2 = 12). The third type of statement are

conditions of the form (if (< e1 0)e2 e3), where (< e1 0) is the predicate and e2 e3

are the consequent and alternative. For example, (let [x sample(uniform 0 1)] (if

(< x-0.5 0)(observe (normal x 1.0)2)(observe (Beta x 5)2)))), which in the

conditional is equivalent to Normal(x, 1|2)I[x<0.5]Beta(x, 5|2)I[x−0.5>0], where I[·] represents

the indicator function.

2.2.1 The compilation output

Combining these statements together we can now compile any program that can be written in a

FOPPL. As an example, we provide an output from the compilation scheme after compiling a pro-

gram that contains all three types of statements, Program 2.1, representing a probabilistic model

for determining the mean of a population, given some observations y1, y2, under the assumption

that the population is normally distributed. The mean, represents the latent variable in our model.

Program 2.1: A Cloure-based FOPPL Gassuian-Unknown mean program containing samples, observes
and conditionals. The file name of this program is gaussian_unknown_mean_branching_model.clj, which
we will need to import into our Python script.

( l e t [ mean ( sample ( normal 0 1) )
y1 1
y2 −1 ]

( i f ( > mean 0)
( observe ( normal mean 1) y1 )
( observe ( normal mean −1 ) y2 ) )

[ mean, y 1 , y2 ] )

The directed acyclic graphical model structure outputted is that of Program 2.2 and the gener-

ated computational graph that is used to interact with the inference engine and extract the program

density can be seen in Program 2.3. In our system Python and Clojure syntax is interchangeable

and so we can write our probabilistic model in Clojure, and run it natively in Python code.
from pyppl import compile_model
import gaussian_unknown_mean_branching_model as branching_model
compiled_python = compile_model(branching_model, language="clojure")
\# Vertices : 3, \#Arcs: 2
Vertices V:
Vertex x30001 [Sample]

Name: x30001
Ancestors :
Cond−Ancs.:
Dist−Args: \{ ’ loc ’ : ’0’ , ’ scale ’ : ’1’ \}
Dist−Code: dist .Normal(0, 1)
Dist−Name: Normal
Dist−Type: DistributionType .CONTINUOUS
Sample−Size: 1
Orig. Name: mean

Vertex y30003 [Observe]
Name: y30003
Ancestors : x30001
Conditions : cond\_30002=True
Cond−Ancs.: x30001
Cond−Nodes: cond\_30002
Dist−Args: \{ ’ loc ’ : " state [’x30001’]", ’ scale ’ : ’1’ \}
Dist−Code: dist .Normal(state [ ’x30001’], 1)
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Dist−Name: Normal
Dist−Type: DistributionType .CONTINUOUS
Sample−Size: 1
Observation : 1

Vertex y30004 [Observe]
Name: y30004
Ancestors : x30001
Conditions : cond\_30002=True
Cond−Ancs.: x30001
Cond−Nodes: cond\_30002
Dist−Args: \{ ’ loc ’ : " state [’x30001’]", ’ scale ’ : ’−1’\}
Dist−Code: dist .Normal(state [ ’x30001’], −1)
Dist−Name: Normal
Dist−Type: DistributionType .CONTINUOUS
Sample−Size: 1
Observation : −1

Arcs A:
(x30001, y30003), (x30001, y30004)

Conditions C:
Condition

Name: cond\_30002
Ancestors : x30001
Condition : ( state [ ’x30001’] > 0)
Function: state [ ’x30001’]
Op: >

Program 2.2: The directed acyclic graph G(V, E) of Program 2.1. We can see how the vertices are
formed, what types of variables they are, sample , observe , or conditional (conditions), and how the
different variables relate to each other, and their types, are they continuous, or dis-continuous variables,
which is critical to know for certain types of inference engines, Subsection 3.1.6.

import torch
import torch. distributions as dist

class Model():

def __init__( self , vertices : set, arcs : set, data : set, conditionals : set):
super().__init__()
self . vertices = vertices
self . arcs = arcs
self . data = data
self . conditionals = conditionals

def __repr__(self ) :
V = ’ \n’ . join (sorted([repr(v) for v in self.vertices]) )
A = ’ , ’. join ([ ’ ({}, {})’ .format(u.name, v.name) for (u, v) in self . arcs ]) if len(self. arcs ) > 0 else ’ −’
C = ’ \n’ . join (sorted([repr(v) for v in self.conditionals ]) ) if len(self. conditionals ) > 0 else ’ −’
D = ’ \n’ . join ([repr(u) for u in self. data ]) if len(self. data ) > 0 else ’ −’
graph = ’ Vertices V:\n{V}\nArcs A:\n {A}\n\nConditions C:\n{C}\n\nData D:\n{D}\n’.format(V=V, A=A, C=C, D=D)
graph = ’# Vertices : {}, #Arcs: {}\n’.format(len(self.vertices) , len(self . arcs ) ) + graph
return graph

def gen_cond_bit_vector( self , state ) :
result = 0
for cond in self . conditionals :

result = cond. update_bit_vector ( state , result )
return result

def gen_cond_vars(self) :
return [c.name for c in self. conditionals ]

def gen_cont_vars( self ) :
return [v.name for v in self. vertices if v. is_continuous and not v. is_conditional and v.is_sampled]

def gen_disc_vars( self ) :
return [v.name for v in self. vertices if v. is_discrete and v.is_sampled]

def gen_if_vars( self ) :
return [v.name for v in self. vertices if v. is_conditional and v.is_sampled and v.is_continuous ]

def gen_log_prob(self , state ) :
try:

log_prob = 0
dst_ = dist .Normal(loc=0, scale=1)
log_prob = log_prob + dst_ . log_prob( state [ ’x30001’])
state [ ’cond_30002’] = ( state [ ’x30001’] > 0)
dst_ = dist .Normal(loc=state [ ’x30001’], scale=1)
if state [ ’cond_30002’]:

log_prob = log_prob + dst_ . log_prob( state [ ’y30003’])
dst_ = dist .Normal(loc=state [ ’x30001’], scale=−1)
if not state[ ’cond_30002’]:

log_prob = log_prob + dst_ . log_prob( state [ ’y30004’])
return log_prob

except(ValueError, RuntimeError) as e:
print(’****Warning: Target density is ill−defined****’)

def gen_prior_samples( self ) :
state = {}
dst_ = dist .Normal(loc=0, scale=1)
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state [ ’x30001’] = dst_ .sample()
state [ ’cond_30002’] = ( state [ ’x30001’] > 0)
dst_ = dist .Normal(loc=state [ ’x30001’], scale=1)
state [ ’y30003’] = 1
dst_ = dist .Normal(loc=state [ ’x30001’], scale=−1)
state [ ’y30004’] = −1
return state

def get_arcs( self ) :
return self.arcs

def get_arcs_names(self ) :
return [(u.name, v.name) for (u, v) in self . arcs ]

def get_conditions ( self ) :
return self. conditionals

def get_vars( self ) :
return [v.name for v in self. vertices if v.is_sampled]

def get_vertices ( self ) :
return self. vertices

def get_vertices_names( self ) :
return [v.name for v in self. vertices ]

Program 2.3: The computational graph derived from Program 2.1. The compiler automatically generates
the log probaiblity density of the program, which is typically used for inference, Chapter 3, for numerical
stability. Furthermore, the output also enables sampling from the program, depedent on which condition is
triggered.

The compilation target generated from our system generates a target that can be used to

extend existing languages, such as Stan [Carpenter et al., 2017], to a larger class of models

and enables us to integrate more computationally efficient inference engines, without having to

redesign the underlying language, we present the full details in Chapter 4.

2.3 An interface for probabilistic programming
Previously, we saw that when we sample random variables we utilise the sample construct and

when we need to condition on random-variables we utilise the observe construct. Formally,

we state that sample will be used to make raw random draws xj ∼ faj
(xj|φj) at a location in

the program aj , where aj is an address in the execution trace and j is the index of the random

draw in the execution trace, we will formally introduce the concept of a trace and address in

Subsection 2.3.1. The raw random draws imply that they directly come from a distriubution type,

rather than generated via a process, or separate sampling procedure. Here, faj
(xj, φj) denotes

a density, or mass function, depending on the type of the random variable, and φj is a subset

of the variables in scope at the point of sampling, which may include distribution parameters,

internal observations and other deterministic program variables. In a FOPPL, faj
(xj, φj) terms

directly correspond to the prior in the conventional sense, p(xj|φj) = faj
(xj, φj) as there are

no observation terms in φj , however, in UPPLs, as observations can appear in the φj terms

this can lead to p(xj|φj) 6= faj
(xj, φj) and so faj

(·) acts like a prior, but may not be a one-to-

one mapping with a conventional prior, p(x). Formally, the observe statements, denoted by
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gbk
(yk|ψk), represent the terms in the simulator that condition on some variables, with bk serving

a similar purpose to aj and ψk shares the same definition as φj . When the language is a FOPPL,

gbk
(.) will directly correspond to a likelihood term p(x|y), in the standard Bayesian sense. In

contrast, as UPPLs allow for conditioning on stochastic observations on execution paths of the

program, gbk
(·) will not always directly correspond to a likelihood in the standard Bayesian sense

and so the term likelihood, in this sense, is ill-defined. More generally, each observation yk

factors the program density by gbk
(yk|ψk), where bk is the location of this observation statement,

and ψk are parameters of the factorisation.

2.3.1 Tracking random variables and program traces

Addresses aj can be thought of as an index that enables the inference procedures implemented

in the back-end of the system to understand the ordering of the random calls, or where the

latent variables occur, so that the program density can be constructed correctly for inference.

Associated with an address aj are various quantities: such as the distribution type, is it continuous

or dis-continuous, and the sampled value after execution, at that location. Formally, the set

of address {a1, . . . , anx}, from one forward run, forms a trace in the program comprised of

a series of samples x = {xj}j=1:nx , where nx is the number of latent variables in the given

forward evaluation and can vary on each execution. The trace enables us to uniquely identify

the elements of a sequence of samples, which is required in many sampling-based inference

schemes. For example, Markov chain Monte Carlo based algorithms such as Lightweight

Metropolis-Hastings [Wingate et al., 2011], Subsection 3.3.2, require a transition kernel which is

a conditional distribution of one sample sequence given another sample sequence, to calculate

the acceptance probability of accepting a new sample sequence given by the transition kernel.

As ordering is important, by uniquely identifying each sample statement we can correctly align

elements from the old and the new sample sequences. As such, each sampled value is then

uniquely identified using its static address, and, when the language is dynamically evaluated

using a trace-based inference scheme, an instance number, ij . The instance number refers to the

number of times the same sample statement, including the current one, has been encountered. In

contrast, probabilistic programming systems with inference backends based on gradient-based

Markov chain Monte Carlo methods, such as Hamiltonian Monte Carlo, do not require instance

numbers, even if dynamically evaluated, as it does not depend on the trace construction, but

requires knowledge about the types of the latent variables associated to each address.
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As a concrete example lets consider the following Gaussian unknown-mean example, Pro-

gram 2.4, where the goal is to find the means, µ1 and µ2, that best describe the distribu-

tion of the observations y.

Program 2.4: Gaussian Unknown Means with Gamma prior.
y = 10
mu_1 = sample ( normal (3 , 2 ) )
mu_2 = sample (gamma ( mu_1,1 ) )
observe ( normal ( mu_2,5 ) , y )

When the modelled is compiled the directed acyclic graph, Program 2.5 is created.
# Vertices : 3, #Arcs: 2
Vertices V:
Vertex x30001 [Sample]

Name: x30001
Ancestors :
Cond−Ancs.:
Dist−Args: {’ loc ’ : ’3’ , ’ scale ’ : ’2’}
Dist−Code: dist .Normal(3, 2)
Dist−Name: Normal
Dist−Type: DistributionType .CONTINUOUS
Sample−Size: 1
Orig. Name: mu_1

Vertex x30002 [Sample]
Name: x30002
Ancestors : x30001
Cond−Ancs.:
Dist−Args: {’alpha’ : " state [’x30001’]", ’ beta ’ : ’1’}
Dist−Code: dist .Gamma(state[’x30001’], 1)
Dist−Name: Gamma
Dist−Type: DistributionType .CONTINUOUS
Sample−Size: 1
Orig. Name: mu_2

Vertex y30003 [Observe]
Name: y30003
Ancestors : x30002
Conditions :
Cond−Ancs.:
Cond−Nodes:
Dist−Args: {’ loc ’ : " state [’x30002’]", ’ scale ’ : ’5’}
Dist−Code: dist .Normal(state [ ’x30002’], 5)
Dist−Name: Normal
Dist−Type: DistributionType .CONTINUOUS
Sample−Size: 1
Observation : 10

Arcs A:
(x30001, x30002), (x30002, y30003)

Program 2.5: The graph G(V, E) of Program 2.4

We see in the compiled output, Program 2.5, that all random variables have a unique identifier,

i.e. the sampled variable µ1 is represented by Vertex x30001. This is the address index,

i.e. a1 = x30001, and the information associated with the address tells us the distribution

type, continuous for µ1, the arguments φ in the distribution object, 0 and 1. Furthermore, if

random variables are dependent on one-another, the compiled graph also details this; such as

the execution of µ2, which is an ancestor of µ1.

Extracting the Addresses from Real-world Simulators

Here we provide an example of what the addresses and traces look like for a real-world simulator,

a Malaria virus vector simulator, OpenMalaria [Smith, 2008], generated using the Probabilistic

Programming eXecution (PPX) protocols and corresponding coroutines that we develop in
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Chapter 5. In Figure 2.2, we show the trace graphs after a forward execution of each simulator,

connected via the PPX protocols to PyProb [Le et al., 2017], a Python-based UPPL.

START A11.000
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A20.010
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A3

0.999

A4
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0.000
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END
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0.002

A10
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0.008
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Figure 2.2: Here we run the OpenMalaria simulator and plot the outputted trace paths and path
probabilities, generated by thousands of calls to each address A1, . . . , Anx .

For each trace we have the addresses A1, . . . , Anx , where the addresses represent the sampled

variables in the trace x = {xj}j=1:nx and along each edge in the graph denotes the trace

probability. For the OpenMalaria simulator, in Table 2.1, we can see the distribution object for

each address, the parameters to that distribution object and the location in the physical code base.

Table 2.1: An example of an address generated for the model run forward in the OpenMalaria simulator.
We can see that for each address we extract its distribution types, parameters to the distribution, location
information of the code and the related function calls to that address.

Address ID Full address

A1 [forward()+0x204; OM::Simulator::
start(scnXml::Monitoring const)+0x28a;
OM::Population::createInitialHumans()+0x94;
OM::Population::newHuman(OM::SimTime)+0x5c;
OM::Host::Human::Human(OM::SimTime)+0x12b;
OM::WithinHost::WHInterface::createWithinHostModel(double)+0x99;
OM::WithinHost::DescriptiveWithinHostModel::DescriptiveWithinHostModel(double)+0x3a;
OM::WithinHost::WHFalciparum::WHFalciparum(double)+0xe6;
OM::util::random::gauss(double, double)+0xb4]__Normal

...
...

...
...

A5 [forward()+0x204; OM::Simulator::start(scnXml::Monitoring const&)+0x468;
OM::Population::update1(OM::SimTime)+0xff;
OM::Host::Human::update(bool)+0x2bc;
OM::Clinical::ClinicalModel::update(OM::Host::Human&, double, bool)+0x96;
OM::Host::NeonatalMortality::eventNeonatalMortality()+0x9;
OM::util::random::uniform_01()+0xc0]__Uniform

...
...
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2.4 Simulators in a probabilistic programming environment
"one stocastic variable ’x’". The variable for the bias is called ’bias’ in Listing 2.6 but ’x’

here. And then on the next page, ’x’ is also used to indicate the variable for the outcome of

the coin toss and also the value of this variable.¬ This needs to be corrected throughout to

distinguish between these three quantities e.g. use ’bias’ for the bias, ’x’ for the coin toss

and ’x=H’ when referring to values of ’x’

Returning to the coin-flip example in Section 1.4, where we have a worn coin and want

to learn how bias the coin is, so that we can construct a stochastic simulator to emulate the

coin, Program 2.6. We could develop a deterministic model that relies on physical dynamics to

determine the outcome of a flipped coin for a given set of physical variables, and experimentally

determine the coin’s bias depending on how it follows the true physics. However, this is

incredibly complex, as there are many different variables that we have to account for, some

of which may be unknown-unknowns; that is we are blind to their existence and how they

affect a process. Alternatively, we can remove aspects of this complexity by ignoring the

physical dynamics, and modelling the coin as a stochastic decision-maker that has some level

of bias to be learnt, Program 2.6.
def coin_flip(bias):
return sample(bernoulli(bias))

Program 2.6: The coin-flip flipper simulator.

where the simulator coin− flip takes as input a bias, and returns 1, for heads, or 0, for tails

depending on the outcome of the draw from the bernoulli distribution. If we learn the correct

bias by conditioning on our experimental observations, then collecting outputs from this program

will lead to the same posterior generated from conditioning on the observations of the flipped

coins. Thus, the program defines a forward generative model that is now capable of simulating

the outcome of a coin-flip, and enables us to gather observations from a coin with a given

bias, without ever having to flip a real coin.

In this model we assume that we need one stochastic variable x, the probability that

the outcome is heads, p(x = H). We know that we can observe two possible outcomes,

y = H , heads, or y = T , tails and we assume it is impossible for the coin to land on its

side, y = S, p(x = S) = 0.

If the coin were fair, no bias, we would see that the probability of p(x) = p(¬x) = 0.5, but

if the coin is biased, then this will not be the case. So how do we determine the bias, which
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is represented by our latent vairable x? Do we experimentally flip the coin many times and

assume that the end result, after some frequency of heads, nh, and number of flips, nf , to be

the correct probability i.e., p(x) = nh

nf
? We could, but looking solely at the frequency would

only give us a point estimate, so we would not know how “good” our estimate is. Or, do we

encode our prior beliefs into the model, that the coin is worn, thus potentially biased and let

this subjective view determine the posterior prediction?

In order to leverage the Bayesian framework, Section 1.4, we require a prior p(x) and a

likelihood term p(y|x). Once these are defined our objective is to calculate the posterior, p(x|y)

to determine if the coin is biased, i.e is p(x = H) > 0.5, or p(x = H) < 0.5 a valid assumption,

given our observations.

We initially assume that we have a non-informative prior, that is the probability that the outcome

is heads, p(x = H), follows a uniform distribution on the interval [0,1], so we are favouring

no particular initial belief about the biasedness of the coin, thus the form of the prior is

p(x) = U(0, 1) and we sample from this prior during each forward execution of the model,

x ∼ U(0, 1). If we believe that the coin prefers one outcome more than another, we can

incorporate that belief with a prior that follows a beta distribution and recalculate the posterior.

With probabilistic programming this is made incredibly simple, see Programs 2.7 and 2.8.

Once we have chosen our prior we construct the likelihood of our model. We have a natural

distribution that describes our problem set-up for the biased coin, the binomial distribution

Bin(n,x). The Binomial distribution is a discrete distribution that enables us to derive the

probability of determining n successes, in this case, the number of heads, n = nh, from

N = nh + nt independent runs of our model, flipping the coin, where the result of each forward

run is either H , with probability p(x = H) = x, or T with probability p(¬x) = 1− p(x = H).

We can now calculate the posterior. If we did not have access to a probabilistic programming

system we would have to analytically derive the posterior for each new prior, or likelihood, we

choose. We don’t have to do that here and leave that labourious exercise to Appendix A.1. With

a probabilistic programming system all we have to do is run our program code, Program 2.7, and

the posterior required to determine the biasedness of the coin will be returned.
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def model(N, data):
x = sample(uniform(0, 1))
observe(binomial(N, x), data)
return x

Program 2.7: The coin-flip model with Uniform prior.

In Program 2.7, N is the total number of flips and data is generated from experimental

observations, but this could equally be generated from the simulated coin-flip, Program 2.6,

for a given bias. The data = [5, 87, 670], which represents the number of heads observed,

nh, from N = [10, 100, 1000] coin flips. When we execute the program in Program 2.7 the

code is compiled, which enables us to extract the program density, as we saw previously,

Section 2.3. Using this compilation output, we can utilise PyMC3’s inference back-end to

calculate the posterior, see Figure A.1. In this instance, the program density will be the numerator

of Equation A.3, in Appendix A.1. However, this posterior will change as we change the structure

of the code with different model features, priors and likelihoods. Nonetheless, the probabilistic

programming system will take care of this.

Modelling with Different Priors

As noted previously, if we had seen that we have more heads than tails, as we saw in the second

and third set of observations, then we could use a beta distribution as the prior, skewed towards

the left tail, instead of the original uniform prior, this amounts to changing one line of code

in the probabilistic program in Program 2.7.
def model(n, data):
x = sample(beta(2, 5))
observe(binomial(n, x), data)
return x

Program 2.8: The coin-flip FOPPL program with Beta prior

We compile this program in our FOPPL system and we get our posterior samples for the bias.

See Figure 2.3 for the posterior outputs and trace plots of the sampled value for each iteration,

for each of these models, under the same set of observations as the original model. We see

that the posteriors are equivalent to our hand-calculated case, Appendix A.1, as expected and

the expected value for the bias parameter of Programs 2.7 is E[bias] = 0.67. We note that by

changing our subjective prior beliefs, the posterior of the model evolves differently as it consumes

new data. Eventually, both prior choices lead to the same final posterior after a large number of

observations, but for lower numbers of observations each model predicts a different expected

level of bias for the coin. This is the subjective component of Bayesian modelling.
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Figure 2.3: Posterior plots, left, and inference trace plots for 20, 000 samples from Bayesian inference
algorithm, right, for the bias parameter of the coin-flip program, for both a Uniform, green, and Beta,
purple, prior.

2.4.1 Inference challenges

In Appendix A.1 we describe how to calculate the posterior for the coin-flip model with

the uniform prior and show how doing Bayesian inference, even in simple models, without

probabilistic programming is laborious. Unfortunately, there are many probabilistic models of

practical interest for which exact inference is impossible, at least with known methods, and so we

must revert to numerical inference algorithms, Chapter 3. These algorithms can be broken down

into two distinct classes: exact and approximate inference schemes. Exact inference schemes

generate the exact marginals when the underlying factors of the graphical model form a tree,

although methods such as cut-set conditioning, and junction tree do not require this. However,

such methods like cut-set conditioning and junction trees only work well for models with a small

number of variables. These schemes typically utilise message-passing schemes to exchange
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information between nodes in the graphical model [Minka et al., 2014] and are effective and

computationally efficient, for certain types of graphical models that can be factored. In particular,

models where the latent variables are from the exponential families [Murphy, 2012]. However,

the complexity of exact inference on arbitrary graphical models is NP-hard and so we can only

perform exact inference on a small subset of probabilistic models.

Thus, many problems can only be solved with approximate inference schemes. These schemes

come in two forms: sampling-based, which include Markov chain Monte Carlo and particle based

methods, and optimisation-based, which include variational methods. We focus on the former

in this thesis. Optimisation-based methods exploit local and global structures to determine the

optimal parameters for approximating an analytical form to the posterior of the latent variables,

while simultaneously computing the lower bound of the marginal likelihood - where the higher

the marginal likelihood the better. While these methods can be effective, efficient and scalable

to large dimensions, it is difficult to know how far away you are from the true posterior of

your given model, or program, as you only know that you are in some vicinity of the posterior,

which may mean samples generated from the learned generative model will not be entirely

representative of the observations that the program is trying to describe. In contrast, sampling-

based methods will asymptotically converge to the correct posterior, in the limit of a large number

of samples, or particles. This too can be framed in a optimisation perspective, as you are learning

the best set of latent variables from some set of feasible alternatives that describe your data

in the best context under a pre-defined objective function. Typically, sampling based methods

struggle to scale to big-data, high-dimensional latent spaces, and to probabilistic models that

contain mixtures of latent variable types i.e. continuous and discrete. But, as we shall see in

Chapters 4, 5 and 6, we develop compilation techniques and inference procedures to mitigate

these problems for a large class of probabilistic models.
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3
Inference Algorithms

In this chapter we will explore a number of important sampling algorithms based on the principles

of Monte Carlo (MC) [Metropolis and Ulam, 1949], that form the foundation of many of

the sampling schemes utilised throughout the presented works in this thesis, and in general

probabilistic programming systems, Section 3.3. Monte Carlo methods are ubiquitous across

statistics, computational physics, numerical integration and many other domains, due to their

simplicity and ability to generate samples from high-dimensional functions. The core idea of

Monte Carlo methods is to use some form of proposal distribution that we can easily sample

from and then make appropriate adjustments to achieve, in most cases approximate, samples

from the posterior. Sampling schemes constructed from the principles of Monte Carlo will help

us to evaluate integrals that we cannot necessarily analytically integrate, but can evaluate in a

point-wise fashion, enabling us to numerically estimate their value. In the context of probabilistic

inference, these integrals typically involve expectations, which are the quantities of interest when

we want to learn the expected posteriors of the latent variables in our simulator, when utilising

Bayes’ theorem. Unfortunately, integrating out particular variables to extract the marginals from

the joint density, the denominator in Bayes’ theorem, Equation 1.1, is intractable for most real-

world problems and so we must find away to estimate the integral instead. Utilising Monte Carlo

methods will enable us to calculate those marginals, under light assumptions that we can perform

point-wise evaluations of the function of interest such that they are independent from one another.

Although, as we shall see in Subsections 3.1.3 and 3.1.4, we do not actually need to calculate the

marginal as we can generate posterior samples through unnormalised versions of the posterior.

3.1 Monte Carlo
We now introduce the basic principal of Monte Carlo methods, that is Monte Carlo integration,

which states given some function of interest η(x), and a set of N independent and identically
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distributed (IID) samples x̂n ∼ π(x) where n = 1, . . . , N , from a target distribution π(x), the

expected value of any function of a random variable can be approximated as

I = E[η(x)] =
∫
η(x)π(x)dx ≈ IN = 1

N

N∑
n=1

η(x̂n) (3.1)

In our setting, the target distribution will always be a posterior distribution, typically p(x|y).

By varying η(x) we can calculate many quantities of interest such as the expected value

E[x] = 1
N

∑N
n=1 x̂n and variance V ar[x] = 1

N

∑N
n=1(x̂n − E[x])2, which is required when

we need to construct the credible interval, if we are in the Bayesian regime, or confidence

interval if we are in the frequentist regime.

A nice property of Monte Carlo integration is that it leads to an unbiased estimator because

as N →∞, the expected value of the integral goes to the true value of the integral, E[IN ] = I ,

provided the samples generated are IID. This means that Monte Carlo does not introduce any

bias into to the approximation, that is, it will not be an over, or under estimate. If the samples

are not IID then the estimator will be biased and so the converse is true. The fact that Monte

Carlo generates an unbiased approximation, when samples are IID, is because of the law of

large numbers, which states that if the samples are IID, then the empirical mean 1
N

∑N
n=1 η(x̂n),

equals the true expected value E[η(x)] for the function η(x).

3.1.1 Rejection sampling

Rejection sampling is one of the most trivial Monte Carlo methods and provides a way to sample

from distributions that we are unable to directly evaluate the cumulative density function of. It is

the de facto way to sample in traditional stochastic simulators due to its ability to generate exact

samples from the target density π(x) = γ(x)
Z

, even when we can only evaluate the unnormalised

target density γ(x), where Z is the normalisation constant, which is possibly unknown. To

generate exact samples from π(x) we introduce a proposal q(x) that can be simulated by some

known method and satisfies γ(x) ≤ cq(x) for all x, and some constant c. Thus, to perform

rejection sampling we introduce a simple function q(x) such that it encompasses all of γ(x).

We can then generate a sample from π(x) in the following way:

1. Generate x̂n ∼ q(x) and u ∼ Uniform(0, 1) (picking a random x̂n location and height

y = u under the envelope cq(x) )

2. if u ≤ γ(x̂n)
cq(x) ; return x̂n = y
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3. else; Go to step 1

As we generate with probability q(x) and accept with probability γ(x)
cq(x) , the probability of accep-

tance is

E[A(x)] =
∫ γ(x)
cq(x)q(x)dx = 1

c

∫
γ(x)dx (3.2)

and so we want to choose c to be as small as possible, such that cq(x) is larger than γ(x) and

ensuring the initial constraint is satisfied, to ensure A(x) ≈ 1. However, even if we choose a

good c this may still result in a large number of rejections, especially if x is high-dimensional,

because the probability of landing in the acceptance region decreases exponentially as the number

of dimensions increases. This is in contrast to Markov chain Monte Carlo methods, that we will

explore in Subsection 3.1.4, which work well in high-dimensional spaces.

As an example of rejection sampling, consider we are in the Bayesian setting and our

target is the posterior π(x) = p(y|x)p(x)/p(y), thus γ(x) = p(y|x)p(x), and we choose a

proposal to have the same form as the prior q(x) = p(x) and set c = p(y|x̃), where x̃ =

arg max p(y|x) is the maximum likelihood estimate, suggested by Smith and Gelfand [1992].

This leads to an acceptance probability of A(x) = p(y|x)
p(y|x̃) as the p(x) terms cancel. Thus, samples

from the prior that have a higher likelihood are more likely to be retained in the posterior.

However, if there is a large mis-match between the prior and posterior, then A(x) < 1 and

so sampling will be very inefficient.

The next Monte Carlo method that we will explore is importance sampling, which like

rejection sampling uses a proposal distribution q, but instead of an accept, or reject step, we

generate importance weights for each sample, which we can then use to generate an estimate

of the posterior distribution, or the value of an integral.

3.1.2 Importance sampling

In importance sampling we are working under the assumption that we cannot sample from

the target density, π(x), but we can do point evaluations of it and can also sample from the

proposal distribution q(x). This allows us to construct a different Monte Carlo estimator and

evaluate the expectation as

E[η(x)] =
∫
η(x)π(x)

q(x) q(x)dx ≈ 1
N

N∑
n=1

ωnη(x̂n) = Î (3.3)
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where ωn = π(x̂)
q(x̂) are the importance weights and x̂n ∼ q(x), and is valid, provided q(x)

q(x) = 1

for all points where q(x) 6= 0.

The key idea behind importance sampling is to draw samples x in regions that have high

probability π(x) and |η(x)| is large, which leads to a low-variance estimator provided that

a proposal that generates importance weights that have a value close to one. Moreover, the

importance sampling estimate is unbiased, which can be seen as follows

E[ 1
N

N∑
n=1

π(x̂n)
q(x̂n) η(x̂n)] = 1

N

N∑
n=1

Eq[
π(x̂n)
q(x̂n) η(x̂n)] = Eπ[η(x)] (3.4)

where we have used the law of large numbers in the last equality.

A common challenge that occurs in importance sampling is how to choose the right proposal,

this is a complex question to answer in practice, but it can be shown that the optimal proposal

q∗(x) is [Owen, 2013, Chapter 9]

q∗(x) = |η(x)|π(x)
Eπ(x)[η(x)] (3.5)

Further challenges in importance sampling occur when we cannot evaluate π(x) and only know

the unnormalised target density γ(x) = π(x)
Z

. Fortunately, we can still utilise importance sampling

even if we cannot directly evaluate the target through a process called self-normalised importance

sampling, Subsection 3.1.3, however, utilising this method gives rise to a biased estimator.

3.1.3 Self-normalised importance sampling

When we are in the Bayesian inference setting, the marginal likelihood, normalisation constant,

is typically intractable, which means importance sampling, Subsection 3.1.2, is not applicable

to settings where the marginal likelihood is not known, as we need to be able to evaluate

π(x) in a point-wise fashion. However, we can typically evaluate the joint density p(x,y),

which is proportional to the posterior density p(x,y) ∝ p(x|y). Thankfully, we can adapt

importance sampling so that we can evaluate expectations without having to sample directly

from the target distribution π(x) = γ(x)
Z

, by self-normalising the importance weights. To do

this, we start by creating Monte Carlo estimators for both Z and ZEπ(x[η(x)]. For Z, the

Monte Carlo estimator is ZN = 1
N

∑N
n=1 ωn and so E[ZN ] = Z as the Monte Carlo estimator

converges to the true expectation as the number of samples increases. Thus, for ZEπ(x[η(x)],

we note Eq[γ(x)
q(x)η(x)] = ZEπ[η(x)], and so if we take the ratio of these two estimators then
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we can construct an expectation for η(x) under the distribution π(x) that does not require

the normalisation constants as follows

I = Eπ[η(x)] ≈ Î =
1
N

∑N
n=1 ωnη(x̂n)

1
N

∑N
n=1 ωn

=
N∑
n=1

ω̄nη(x̂n) (3.6)

where x̂n ∼ q and ωn = γ(x̂n)
q(x̂n) are the unnormalised importance weights. The normalised

importance weights are defined as ω̄n = ωn∑
n
ωn

as
∑N
n=1 ω̄n = 1. However, as the integral is now

a ratio of two estimates and the numerator and denominator are correlated - since they are using

the same set of samples, this estimator is biased for a finite N , and so the expectation E[Î] 6= I .

As we did in importance sampling we can also construct an optimal proposal q∗ for a self-

normalised importance sampler, which is given by [Owen, 2013][Chapter 9]

q∗(x) = π(x)|η(x)− I|∫
π(x)|η(x)− I|dx (3.7)

However, in many cases η(x) is not known ahead of time and we might want to evaluate

I for multiple η(x), so we still need to generate samples for future use. Fortunately, we can

carry out importance sampling in the same vein by sampling from q and generating a set

of weighted samples {x̂n, ωn}n=1:N that can be used to approximate the posterior π(x) as a

weighted sum of delta distributions centered at x̂n

π(x) ≈ π̂(x) =
N∑
n=1

ω̄nδx̂n(x̂n − x). (3.8)

When we do not have access to η there is no single optimal proposal distribution. Instead,

we often consider an optimal proposal to be

q∗(x) = π(x). (3.9)

If we manage to achieve this, then the self-normalised importance estimator has the same form

as the standard Monte Carlo estimator, Equation 3.1, that is

Î = 1
N

N∑
n=1

η(x̂n) where x̂n ∼ q∗. (3.10)

Unfortunately, similar to rejection sampling, as the dimensionality of the variables increases,

the sampling efficiency decreases and renders importance sampling ineffective. For importance

sampling to be sample efficient, that is ensuring a significant proportion of the weights are non-

neglible, requires choosing a good proposal distribution, which is challenging to do in practice.
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If the proposal is chosen poorly, then the likelihood of a given weight being greater than zero

diminishes as the dimensionality grows, thus sample efficiency decreases. In Subsection 3.3.3,

we introduce amortized importance sampling, which removes the difficulty of defining a proposal,

by learning offline a family of proposal distributions in a data-driven way, such that the proposal

learnt offline can then be used online to generate fewer non-neglible weights, making importance

sampling more sample efficient. In Subsection 3.1.4 we introduce a set of sampling techniques

called Markov chain Monte Carlo that utilise the Markov property and Monte Carlo to construct

efficient samplers that can explore the target distribution more effectively as the dimensionality

of the variables increase.

3.1.4 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods describe a family of popular numerical infer-

ence techniques, that provide methods for evaluating functions correctly in some asymptotic

limit [Gilks et al., 1995; Hastings, 1970; Metropolis et al., 1953]. They are used widely in

Bayesian inference due to their ability to scale, without significantly reducing sample efficiency

when our probabilistic model has high-dimensional observations and latent variables, see

Chapters 4,5,6 and Subsection 3.1.6. MCMC methods work by leveraging the Markov property

and by constructing a valid Markov chain that has the target distribution as its equilibrium

distribution. The Markov property, Equation 3.11, states that each new state xn is only conditioned

on the last state xn−1, and is independent of all states prior to the xn−1 state, that is

p(xn|x1, . . . ,xn−1) = p(xn|xn−1) (3.11)

and for the Markov chain, x1, . . . ,xn, each state is determined solely from the probability of the

initial state p(x1), and the probabilities to transition between each state are given by p(xn+1|xn).

When each transition probability is the same p(xn+1 = j|xn = i) = p(xn = i|xn−1 = j), then the

Markov chain is called homogeneous, as it only depends on i and j, not n. (time) homogeneous

The term p(xn+1|xn) is call the transition kernel (or proposal distribution), κ(xn → xn+1),

and describes the probability of moving between states. For the Markov chain to converge to

the target distribution π(x), we need the chain to converge to some equilibrium value, that is

lim
n→∞

p(xn = x) = π(x) for any possible initial state x1, and we require that π(x) be a stationary

distribution of the Markov chain. For this to be satisfied the following condition must met

π(x) =
∫
κ(x→ x′)π(x′)dx (3.12)
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If this condition is met, then the target distribution is invariant with respect to the transition kernel.

Thus, after some time t = n our chain will produce samples from the target distribution, such

that if p(xt) = π(x), then all subsequent xt+1 will have come from the target distribution. This

property, that all starting points converge to the target distribution, is known as ergodicity and

requires the Markov chain to be irreducible, that is, all states with non-neglible probability in

the chain can be reached in a finite number of steps, and aperiodic, that no states can only be

reached at certain periods of time. This means that the transition probabilities are non-neglible

for all sufficiently large n. Much of the difficulty in MCMC lies in constructing valid transition

kernels and a common, but not necessary, condition for constructing valid Markov chains is to

ensure the chain satisfies the condition of detailed balance [Hastings, 1970; Metropolis et al.,

1953], which is satisfied if given a target distribution π(x) satisfies

π(x′)κ(x′ → x) = π(x)κ(x→ x′). (3.13)

Any chain that satisfies this property is called reversible, although there are classes of non-

reversible chains such as the bouncy particle sampler [Bouchard-Côté et al., 2018], which can

converge faster to the equilibrium distribution [Hwang et al., 2005], but we shall not discuss

them in this thesis. The MCMC methods that we introduce in this thesis, Subsections 3.1.6,3.1.5

and 3.3.2 all produce reversible chains. By imposing these conditions MCMC methods are able

to overcome the curse of dimensionality. As the transition between states is independent of

all states in the chain, except the previous state, it means that moves in the chain occur locally

with respect to the current position, and so rather than trying to independently sample from

the target distribution, as in the case of rejection and importance sampling, we instead use the

local knowledge of the space to guide us. That is, most of the probability mass, or density, in

a high-dimensional space will be concentrated at the same location, so it makes sense to use

the local information to guide your search of the state space. MCMC still struggles when the

target distribution has multiple modalities, as if certain modes have a lower mass, or density, it

can be difficult to make the local move, unless the proposal q accounts for it.

3.1.5 Metropolis Hastings

The Metropolis-Hastings (MH) algorithm is the backbone of many prominent MCMC methods,

as it is simple to implement and satisfies the detailed balance criteria, provided a suitable kernel,

proposal distribution, is used. The algorithm works by proposing new locations to explore in the
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state space x′, and then determines whether or not moving to that new location is sensible given

the current location x, according to a proposal x′ ∼ q(x′|x), which is conditioned on the current

location via an accept-reject criteria, with the probability of accepting determined by

A(x→ x′) = min(1, γ(x′)q(x|x′)
γ(x)q(x′|x) ) (3.14)

and if the sample is accepted, then at iteration n we set xn+1 = x′, else we remain at x. The full

MH algorithm is shown in Algorithm 1. Notice that the normalisation constant Z cancels out, as

Zπ(x) = γ(x), thus we can evaluate γ(x) to generate samples from the target distribution π(x),

without requiring the normalisation constant. The acceptance ratio defined in Equation 3.14 is

commonly used in MCMC algorithms to ensure that detailed balance is satisfied in the given

inference scheme. However, it should be noted that the sample efficiency of MH is directly

dependent on the choice of the proposal, for example, if q was independent of x then it will

essentially ignore local information and produce a sampler that is less sample efficient than

importance sampling, as the samples are generated in the same way as importance sampling,

but information is lost in the accept-reject step [Rainforth, 2018a]. Furthermore, if the target

contains more than one mode, it can take the sampler a long time to explore all the modes

and generate a sufficient amount of samples, so a lot of work on MCMC goes into finding

efficient ways to explore the state space.

Algorithm 1 Metropolis-Hasting algorithm
1: Initialise x1 . Typically done by sampling from the prior
2: for n = 1, 2, 3, . . . , N do
3: x→ xn
4: x′ ∼ q(x′ |x)
5: α = min(1, γ(x′)q(x|x′)

γ(x)q(x′|x) ) . Acceptance condition
6: u ∼ U(0, 1)

7: xn+1 =

x′ if u < α

x if u ≥ α

8: end for
9: return xn+1

Why Metropolis-Hastings works

To prove that MH generates samples from the target density γ(x), we start by nothing that the

MH algorithm defines a Markov chain with the following transition kernel
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κ(x′|x) = κ(x→ x′) =

q(x′|x)A(x→ x′) if x′ 6= x
q(x|x) +

∫
R q(x′′|x)(1− A(x→ x′′))I[x′′ 6= x] otherwise

(3.15)

This means, if we propose a state x′ with probability q(x′|x) then it must have been accepted

with probability A(x→ x′), otherwise you stay in state x because you either proposed this state

with q(x′|x), or the proposed state was rejected with probability 1 − A(x → x′).

We know that if detailed balance is satisfied, Equation 3.13, then MH defines a valid transition

function and γ(x) is stationary distribution. To show this we need to show that the transition

kernel is ergodic and reversible. Consider two states x and x′, either γ(x)q(x′|x) < γ(x′)q(x′|x),

or γ(x)q(x′|x) > γ(x′)q(x|x′). Without loss of generality we assume the latter, hence

A(x→ x′) = γ(x′)q(x|x′)
γ(x)q(x′|x) < 1 or A(x′ → x) = 1 (3.16)

In order to move from x to x′ we first propose x′ and then accept it. That is

κ(x′|x) = q(x′|x)A(x→ x′) = q(x′|x)γ(x′)q(x|x′)
γ(x)q(x′|x) = γ(x′)

γ(x) q(x|x
′) (3.17)

which means

γ(x)κ(x′|x) = γ(x)q(x|x′) (3.18)

The backwards probability is κ(x|x′) = q(x|x′)A(x′ → x) = q(x|x′) as A(x′ → x) = 1

and so putting this into Equation 3.18 we get

γ(x)κ(x′|x) = γ(x′)κ(x|x′) (3.19)

Thus, detailed balance holds with respect to γ(x), so it is a stationary distribution and because

detail balance holds, the chain is also ergodic and irreducible.

We shall leverage the MH algorithm when utilising a trace-based approach to performing

inference over program traces in probabilistic programming systems, Subsection 3.3.2 and in

Chapter 6 for performing inference in nested models, Subsection 3.2.2, once we have learnt

proposals for the nested program.
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3.1.6 Hamiltonian Monte Carlo

Of particular relevance to our work are probabilistic programming systems designed around

derivative based inference methods that exploit automatic differentiation [Baydin et al., 2018],

such as PyMC3 [Salvatier et al., 2016], Stan [Carpenter et al., 2017], Edward [Tran et al.,

2017], Turing [Ge et al., 2018] and Pyro [Bingham et al., 2019]. Automatic differentiation,

see Baydin et al. [2018], is a tool that enables us to differentiate programmatic code to any

order for which a valid result is returned and enables the implementation of generalisable

inference algorithms that require gradient information [Blei et al., 2017; Carpenter et al., 2017;

Hoffman and Gelman, 2014; Le et al., 2017]. Derivative based inference algorithms, such

as Hamiltonian Monte Carlo (HMC), have been an essential component in enabling these

probabilistic programming systems to provide efficient and, in particular, scalable inference,

permitting both high-dimensional observations and latent variables.

Hamiltonian Monte Carlo is a physics inspired inference algorithm that utilises Hamiltonian

mechanics, where the Hamiltonian of a physical system is defined completely in terms of the

set of points (x,p), where x is the position, and p is the momentum variable. These points

span what is called the phase space, a manifold that enables us to see how the dynamical system

evolves with respect to x and p, and how it is constrained by the total energy within the system

- this constraint on total energy is key to the scalability of HMC. We state that the total energy

of the system is given by the Hamiltonian H(x,p) = K(p) + U(x), where K(p) represents

the kinetic energy and U(x) is the potential energy. To solve problems involving Hamiltonian

dynamics we must solve the following set of differential equations

∇pH = ẋ (3.20)

∇xH = −ṗ (3.21)

However, solving Hamiltons equations in practice is challenging and so we must resort to

numerical integration schemes that satisfy three physical constraints of the Hamiltonian: time

reversibility, invariance of the Hamiltonian and volume preservation. In order to use these

schemes we must discretise Equations 3.20-3.21, which naturally induces errors. One such

low-order error integrator that satisfies all of these properties is the Leapfrog integrator [Duane

et al., 1987; Neal, 2011], which works by updating the momentum and position variables via
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gradient information from the Hamiltonian along a trajectory of length, L, that takes t steps

to complete, with each step being ε in length

p(t+ ε

2) = p(t)−
(
ε

2

)
∇xU(x(t)) (3.22)

x(t+ ε) = x(t) + ε∇pK(p(t+ ε

2)) (3.23)

p(t+ ε) = p(t+ ε

2)−
(
ε

2

)
∇xU(x(t+ ε)) (3.24)

This generates a new proposed state and in order to decide whether we should accept or reject

this proposal, we use the following acceptance criteria[Duane et al., 1987]

min[1, exp(−H(x′ ,p′) +H(x,p)] = min[1, exp(−U(x′) + U(x)−K(p′) +K(p))] (3.25)

where (x′ ,p′) is the proposed state and (x,p) is the current state. In order to simulate Hamiltonian

dynamics correctly, for each x we must introduce an auxiliary momentum variable p. The

momentum is usually sampled from a normal distribution p ∼ N (0, I), which corresponds

to a kinetic energy resembling the mean-field approximation K(p) = pTM−1p
2 , where M , the

mass matrix, is a symmetric, positive definite and typically diagonal matrix, and the potential

energy U(x) = − log γ(x) = − log(p(x)p(y|x)) represents the target density that we want

to generate samples x from.

We present the HMC sampling algorithm in Algorithm 2. The parameters ε and L are

parameters that need to be tuned. Theoretically speaking, in order to ensure that the proposal

is symmetric, we should negate the momentum variables at the end of the trajectory, to ensure

that the Metropolis proposal is symmetrical, which is needed for the acceptance probability to

be valid. However, in practice we do not need to perform this negation since K(p) = K(−p)

for the Gaussian momentum and after each iteration the momentum will be replaced before

it is used again. Hence, we leave it out of Algorithm 2.

Hamiltonian Monte Carlo at Discontinuous Points

One important challenge for these gradient-based probabilistic programming systems occurs in

probabilistic programs that contain discontinuous densities and/or variables. For example, in

HMC, discontinuities can cause statistical inefficiency by inducing large errors in the leapfrog

integrator, leading to potentially very low acceptance rates [Afshar and Domke, 2015; Nishimura

et al., 2020]. Though the leapfrog integrator remains a valid, reversible MCMC proposal, even
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Algorithm 2 Hamiltonian Monte Carlo
1: procedure HMC(x0, ε, L, U , N )
2: for t = 1 to N do
3: pt ∼ N (0, 1)
4: xt → xt−1
5: for i = 1 to L do
6: (xi+1,pi+1)→ LEAPFROG(xi,pi, ε)
7: end for
8: α = min{1, exp(H(xL,pL))−H(xt,pt)}
9: u ∼ Uniform(0, 1)

10: if u < α then
11: xt → xL . Accept
12: else
13: xt → xt . Reject
14: end if
15: end for
16: return (x1, . . . , xN )
17: end procedure
18:
19: procedure LEAPFROG(x, p, ε)
20: p′ → p− ε

2∇xU(x)
21: x′ → x + ε∇pK(p′)
22: p′′ → p′ − ε

2∇xU(x′)
23: return (x′, p′′)
24: end procedure

when discontinuities break the reversibility of the Hamiltonian dynamics themselves, they can

undermine the effectiveness of this proposal.

Different methods have been suggested to improve inference performance in models with

discontinuous densities. For example, they use sophisticated integrators in the HMC setting to

remain effective when there are discontinuities [Afshar and Domke, 2015; Nishimura et al., 2020].

However, these advanced methods are, in general, not incorporated in existing gradient-

based probabilistic programming systems, as existing systems do not have adequate support

to deal with the discontinuities in the density functions of the probabilistic model defined by

the probabilistic program. This support is usually necessary to guarantee the correct execution

of those inference methods in an automated fashion, as many require the set of discontinuities

to be of measure zero. That is, the union of all points where the density is discontinuous

have zero measure with respect to the Lebesgue measure, see Chapter 4 for more details. In

addition to this, some further methods require knowledge of where the discontinuities are, or
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at least catching occurrences of discontinuity boundaries being crossed. The work presented

in Chapter 4 addresses some of these issues.

3.2 Nested Monte Carlo
In many simulators nested structures arise, where an outer program, is dependent on one, or many

nested inner programs, and the outer and inner programs are probabilistic in nature. Problems that

have this nested structure are often called “doubly intractable”, which is equivalent to one layer of

nesting, see Subsection 3.2.1. Finding ways to perform exact, or approximate inference in doubly

intractable integrals [Moller and Waagepetersen, 2003; Murray et al., 2006] and probabilistic

models with nested structures [Stuhlmüller and Goodman, 2014] has seen increased interest in

recent years [Lyne et al., 2015], as probabilistic models with such structures are used across

the sciences. This includes theory of the mind experiments [Stuhlmüller and Goodman, 2014]

where we reason about human behaviour, in financial simulators [Raberto et al., 2001] where

traders reason about other traders market strategies, poker games [Rainforth et al., 2018], in

epidemiology simulators [Smith et al., 2008] where we have rejection sampler programs that are

dependent on the results of other probabilistic programs, and several areas of quantum physics

and epidemiology [Bhanot and Kennedy, 1985; Green and Richardson, 2001; Lyne et al., 2015].

In these problems we can no longer rely on MCMC, or at least MCMC strategies that use a

Metropolis-Hastings transition kernel. Adaptations do exist, but these impose a large number

of constraints on the underlying model [Moller and Waagepetersen, 2003] and so cannot be

used for applications of interest, as the normalisation constant of the likelihood is no longer

constant, so it does not cancel in the MH proposal. To see this, we note that the form of the

posterior in doubly intractable problems is given by

π(x|y) = p(y|x)p(x)
p(y) = P in(y|x)

Z(x) (3.26)

where Z(x) =
∫
P in(y|z)dz is typically intractable and P in(y|x) may or may not be dependent

on x, p(y) is also intractable, hence the name doubly intractable. If we try and construct the

standard MH acceptance proposal, Equation 3.14, we have the following

A(x→ x′) = π(x′|y)q(x|x′)
π(x|y)q(x′|x) = p(x)P in(y|x′)q(x|x′)

p(x)P in(y|x)q(x′|x) ×
Z(x)
Z(x′) (3.27)

and because the normalisation terms Z(x) no longer cancel, in addition to its intractability, means

that we can not construct a valid transition kernel and cannot leverage any of the existing MCMC
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frameworks. To address these issues, in Chapter 6 we develop two new Bayesian inference

schemes that not only scale in dimensionality, but also enable one to leverage MCMC inference

in doubly intractable and multi-layered nesting probabilistic models.

One way to ensure convergence and generate expectations of nested models is through Nested

Monte Carlo, which ensures that at each layer of nesting a sufficient number of samples are

drawn to ensure overall convergence. This is important as each layer is using samples of an

approximation, of an approximation, see [Rainforth et al., 2018] for more details.

3.2.1 Constructing a Nested Monte Carlo estimator

A Nested Monte Carlo (NMC) estimate, for D layers of nesting and real-valued functions

η0 . . . ηD can be recursively formalised as [Rainforth et al., 2018]:

ID(x0:D−1) = 1
ND

ND∑
nD=1

ηD(x0:D−1,xDnd
) (3.28)

Ik(x0:k) = 1
Nk

Nk∑
nk=1

ηk(x0:1,xknk
, Ik+1(x0:k,xknk

)) (3.29)

for 0 ≤ k < D, where each xkn ∼ p(xk|x0:k) is drawn independently and integral I0 is a NMC

estimate using a total sample budget of T = N0 . . . ND . When D = 0 we recover the standard

Monte Carlo estimate, Equation 3.1, and for clarity, when we have a single level of nesting, the

doubly intractable case, η(x0) = η0(x0,E[η1(x0,x1)|x0]), thus

I0 = E[η0(x0,E[η1(x0,x1)|x0)])] ≈ 1
N0

N0∑
n=1

η0(x0
n,

1
N1

N1∑
m=1

η1(x0
n,x1

n,m)) (3.30)

where each x1
n,m ∼ p(x1|x0

n) is drawn independently and I0 is an NMC estimate using a

budget of T = N0N1 samples.

Now that we have introduced NMC, we will explore how we can use this to perform

inference in nested models.

3.2.2 Nested inference

Nested inference problems, which we will explore in more detail in Chapter 6, are unique as nested

inference problems include terms with unknown, parameter dependent, marginal likelihoods.

To formally define nested inference problems we follow the logic of [Rainforth et al., 2018]

and let y and x denote all the random variables of an outer program that are respectively passed

or not passed to the inner program, let z denote all the random variables in the inner program,
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and assume without loss of generality that these are all returned to the outer program. Under

these assumptions, the unnormalised density for the outer program can be written as

γout(x,y, z) = ψ(x,y, z)P in(z|y) (3.31)

where P in(z|y) is the normalised density of the outputs of the inner program and ψ(x,y, z)

encapsulates all other terms influencing the trace probability of the outer program and the inner

program defines an unnormalised density γin(y, z) that can be evaluated pointwise and so

P in(z|y) = γin(y, z)∫
γin(y, z′)dz′ leads to (3.32)

πout(x,y, z) ∝ γout(x,y, z) = ψ(x,y, z)γin(y, z)∫
γin(y, z′)dz′ (3.33)

where πout(x,y, z) is the posterior distribution. The denominator here is intractable due to the

dependence on y and z, and we must evaluate it separately for each value of y.

To perform inference in nested settings we can utilise self-normalised importance sampling.

Again, following closely the work of Rainforth et al. [2018], given a proposal q(x,y, z) =

q(x,y)q(z|y) we can calculate the expectation of some function η(x,y, z) under πout(x,y, z) as

Eπout(x,y,z) [η(x,y, z)] =
Eq(x,y,z)

[
η(x,y,z)γout(x,y,z)

q(x,y,z)

]
Eq(x,y,z)

[
γout(x,y,z)
q(x,y,z)

]

=
Eq(x,y,z)

[
η(x,y, z)ψ(x,y, z)γin(y, z)

q(x,y, z)Ez′∼q(z|y) [γin(y, z′)/q(z′|y)]

]

Eq(x,y,z)

[
ψ(x,y, z)γin(y, z)

q(x,y, z)Ez′∼q(z|y) [γin(y, z′)/q(z′|y)]

] (3.34)

As stated in Subsection 3.1.3, η(x,y, z) is not known upfront so we instead return weighted

samples that can be used to estimate the integral of interest, where the the unnormalised

importance weights are defined as

ωj,k = ψ(xj,yj, zj,k)γin(yj, zj,k)
q(xj,yj, zj,k) 1

N1

∑N1
`=1

γin(yj ,zj,`)
q(zj,`|yj)

. (3.35)

where we sample (xj,yj) ∼ q(x,y) and zj,k ∼ q(z|yj) and return all samples (xj,yj, zj,k), then

each (xj,yj) is duplicated N1 times in the set of samples. We can then use these importance

weights to approximate the posterior as weighted sum of delta distributions, as we did in Equa-

tion 3.8,

πout(x,y, z) ≈
∑N0
j=1

∑N1
k=1 ωj,kδ(xj ,yj ,zj,k)(·)∑N0
j=1

∑N1
k=1 ωj,k

(3.36)
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Although nested self-normalised IS is efficient in low-dimensional latent spaces, as the dimension

of the latent space increases the efficiency decreases substantionally [Gram-Hansen et al., 2019b].

In Chapter 6, we develop two Bayesian inference algorithms to make inference in nested

probabilistic models more computationally efficient in nested models with high-dimensional

latent spaces by enabling the use of efficient MCMC based samplers in nested models.

3.3 Inference in probabilistic programming systems
We have now introduced some fundamental inference algorithms based on the principles of

Monte Carlo, but how do we connect the inference back-end to the probabilistic program? In

Chapters 1 and 2, we explored the different types of PPLs and saw that we can construct a

graphical model of the probabilistic program by using special constructs, Section 2.2, and we

can then use that to perform inference in simulators that are probabilistic programs, Section 2.4.

To perform inference we take those special constructs and use them to generate a joint density

that represents a probabilistic program, P , which is then evaluated by the inference back-end

in the probabilistic programming system.

The choice of inference back-ends will determine the type of information that needs to

be extracted from the probabilistic program in order to run inference. For some inference

back-ends, such as HMC, we do not require a trace, only addresses that are unique to sample

statements defined in the program, and the ability to differentiate the specified target distribution

- which is possible in languages that have automatic differentiation libraries [Bingham et al.,

2019; Carpenter et al., 2017]. Other inference back-ends that are traced-based, will require

access to the program traces, addresses, and instance counters, to keep track of how many

times we have visited a given construct.

In the proceeding subsections we will describe how we define the density of a probabilistic

program, and introduce two general-purpose inference backends that perform inference, not

always efficiently, for any simulator that can be compiled in a UPPL, one being Lightweight

Metropolis Hastings [Wingate et al., 2011] that is based on the MH algorithm, Subsection 3.1.5,

and the other, amortized importance sampling (AIS) [Le et al., 2017] based on importance sam-

pling 3.1.2. Both methods work directly with the trace and need the address stack to track changes

in the underlying random variables, with AIS, sometimes referred to as inference compilation,

requiring the underlying system to generate gradients, but not directly from the program code.
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3.3.1 Probability over program traces

For many simulators it is not possible to explicitly determine the joint density, so how do we

perform Bayesian inference for a general probabilistic program? Rather than constructing the

explicit joint density of the probabilistic model, we can instead perform Bayesian inference over

the set of possible executions of the probabilistic program.

For a general probabilistic program, P , the program trace, Subsection 2.3.1, also called the

execution trace, is a sample sequence of the forward evaluation of a probabilistic program.

Using the trace, we can express the probabilistic program as a sequence of samples and addresses

(xj, aj)j=1:nx , for the jth entry in a given trace of length nx. Sometimes we will also require an

instance counter (ij)j=1:nx , which counts the number of sample statements with the same address

as the current address, aj , encountered during the forward evaluation, that is ij = ∑j
l=1 I[aj = al].

Thus, when we execute P , it directly describes a joint probability distribution between the latent

variables xj and the observations yk, for which we encounter nx sample statements and ny

observe statements. This leads to the formation of sets (fai
, φj)j=1:nx for sample statements

and (gbk
, ψk)k=1:ny for observe statements, and so the probability of a program execution,

provided the program trace is valid, which means all sample statements in that trace have been

evaluated and that all generated distribution objects are valid, is defined as

π(x) ∝ γ(x) =
nx∏
j=1

faj
(xj|φj)

ny∏
k=1

gbk
(yk|ψk) (3.37)

Here, all terms—i.e., xj , nx, aj , φj , ny, bk, yk, and ψk—may be random variables, but each is

deterministically calculable from the trace x1:nx (see, e.g., Rainforth [2018a, Section 4.3.2]),

and γ represents the unnormalised program density. Only in FOPPLs is the program density

defined in Equation 3.37 equivalent to the joint-density γ(x) = p(x,y) = p(x)p(y|x), as FOPPL

programs are by construction directed acyclic graphical models [Van de Meent et al., 2018] and

so may be composed in terms of prior terms, p(x1:nx) =
nx∏
j=1

faj
(xj|φj) and likelihood terms

p(x1:nx|y1:ny) =
ny∏
k=1

gbk
(yk|ψk). However, in an UPPL, gbk

(·) is not necessarily a likelihood, see

Section 2.3 and so does not define the standard joint-density. In the same way we calculated the

normalised target distribution previously, we can also define the posterior program as

π(x) = γ(x)
Z

(3.38)
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where Z is the normalisation constant and can be calculated by integrating over all possible

program execution traces

Z =
∫
γ(x)dx (3.39)

As we discussed previously, the normalisation factor, the marginal likelihood, over program

execution traces is typically intractable, and so we must revert to approximate inference schemes,

such as MCMC and importance sampling to calculate it. In the same vien as we described

previously, we can also calculate expectations for a probabilistic program, by taking the program

output, which is a deterministic function, η(x), given the sampled values x in the execution trace.

Thus, we can use the posterior distribution over the execution traces π(x) to characterise the

distribution over program outputs given the observations y to calculate the posterior expectation

E[η(x)] =
∫
η(x)π(x)dx = 1

Z

∫
η(x)γ(x)dx (3.40)

As this is characterised over the outputs of the probabilistic program, it means that when we run

the probabilistic program forward we are directly defining a joint-density. Many sampling-based

inference algorithms used for probabilistic programming require uniquely identifying the elements

of a sequence of samples, and so by constructing the program density of a probabilistic program

via the execution traces, we can now explore two purpose-built probabilistic programming

inference schemes, Light-weight Metropolis-Hastings [Wingate et al., 2011] and amortized

importance sampling [Le et al., 2017].

3.3.2 A trace-based inference scheme

Lightweight Metropolis-Hastings (LMH) [Wingate et al., 2011], is a general-purpose trace-based

MCMC inference algorithm that has been designed around execution traces of probabilistic

programs, where a single random variable drawn in the course of a particular execution of a

probabilistic program, which is modified via a standard MH proposal, is accepted depending

on the probability generated when comparing the values of the joint program density evaluated

at the old and proposed program trace. LMH differs from component-wise MH algorithms

in that other random variables may also have to be modified, depending on the structural

dependencies in the probabilistic program.

We initialise LMH by running a program, P , forward once to generate an initial trace x1

of length nx1 . We then run the program forward a large number of times to generate multiple
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traces. Given a trace xl of length nxl , we define a reversible proposal q(x′|xl) for sampling a new

candidate trace and begin by picking a single random choice xlm from the trace xl that is of length

nxl , by drawing m uniformly from the set of integers {1, . . . , nxl}. Then, we apply a reversible

proposal qm(x′m|xlm) to propose a new value at that specific random choice. Keeping all sample

variablesm+1 onwards fixed, we re-run the remainder of the program to generate a new proposal

trace x′ of length nx′ . This leads to the probability of acceptance for a proposed trace x′ as

A(x→ x′) = min(1,
γ(x′1:nx′

)nxlqm(xlm|x′m)∏n
xl

j=m+1 f
l
aj

(xlj|φlj)
γ(xl1:n

xl
)nx′qm(x′m|xlm)∏nx′

j=m+1 f
′
aj

(x′j|φ
′
j)

) (3.41)

In our implementation of LMH used in Chapter 5 the proposal is generated by forward

simulation of the prior fam(xm|φm), which leads to the acceptance probability

A(x→ x′) = min(1,
γ(x′1:nx′

)nxl

∏n
xl

j=m f
l
aj

(xj|φj)
γ(xl1:nl

x
)nx′

∏nx′
j=m f

′
aj

(x′j|φ
′
j)

) (3.42)

For models with significant prior-posterior mismatch, such an approach could be slow to

mix as it does not allow for any locality in the moves. To improve the efficiency of LMH Le

[2015] introduced Random-walk MH (RMH), which uses the distribution type of the object

associated with xm to automatically construct a valid random walk proposal that allows for

improved exploration on the individual updates.

3.3.3 Amortized importance sampling

Once a simulator is expressed as a probabilistic program P , that is a joint program density

γ(x) = p(x,y) is defined, we are interested in performing inference in order to get posterior

distributions π(x) of the latent variables x conditioned on observed variables y. However,

performing inference in complex models is typically slow and must be re-run for every new set

of observations, which is natural bottleneck when performing inference in probabilistic programs.

Moreover, many inference problems have shared structure, and we should be able to leverage

that shared structure when calculating the posterior under a different set of observations. To

exploit this structure we can amortize the cost of inference by learning a family of proposals,

offline, for a range of observations, which is expensive, but in return makes online inference

computationally cheap and efficient, as the proposal should better match the posterior [Cappé

et al., 2008]. In the probabilistic programming paradigm, because we have direct access to the

underlying simulator, it is computationally cheap to run P forward to generate a database of
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observations, which can then be used to learn a general family of proposals qaj
(·) that can be

utilised during online-inference for any given set of observations y.

Amortized importance sampling (AIS) is an efficient importance sampling-based method [Le

et al., 2017] that leverages amortization of the inference problem when we have direct access to

P . Rather than manually selecting a proposal distribution, we can instead leverage the learned

family of parameterised proposal distributions characterised by both simple and sophisticated

Neural Network (NN) architectures that match the underlying posterior density. Thus, in theory,

AIS should reduce the proportion of importance weights equal to zero as we generate proposals

that are similar to the posterior, which makes AIS more sample efficient, when compared to

standard and self-normalised importance sampling.

Formally speaking, in Subsection 3.1.3 we saw that we can take a set of weighted samples

{(x̂n, ωn)n=1:N} and construct an empirical approximation of the posterior distribution π̂(x) =∑N
n=1 ω̂nδ(xn − x), where δ is the Dirac delta function and ω̂n are the normalised weights. The

importance weight for each execution trace of P is

wn =
ny∏
k=1

gbk
(yk|x1:nx′

)
nx∏
j=1

faj
(xj|x1:j−1)

qaj ,ij (xj|x1:j−1) , (3.43)

where qaj ,ij (·|x1:j−1) is known as the proposal distribution and may be identical to the prior

faj
, as in regular importance sampling. The proposal distributions in AIS are learnt using a

recurrent NN, ζ(·), that receives the observed values y and returns a set of adapted proposals

qaj ,ij (xj|x1:j−1, ζ(κ,y)) such that the joint proposal distribution q(x|ζ(κ,y)), which is factored

into the product of proposals q
j ,ij (·) whose type depends on the type of the prior faj

, is close

to the true posterior π(x). As we need to choose parameters κ that perform well across all

observations y, we construct an objective function L(κ) by minimising the expected value of

the Kullback–Leibler divergence from p-to-q under p(y), that is

L(ζ) := Ep(y) [DKL (π(x) || q(x|ζ(κ,y)))] (3.44)

=
∫
p(y)

∫
log p(x|y)

q(x|ζ(κ,y))dxdy = Eγ(x) [− log q(x|ζ(κ,y))] + const. (3.45)

which has gradient

∇ζL(ζ) = Eγ(x) [− log q(x|ζ(κ,y))] (3.46)

where ζ(κ,y) is the NN and the parameters κ are the weights of the NN, which are optimised to

minimise this objective by continually drawing training pairs (x,y) ∼ P from the probabilistic
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program. As with all inference schemes there are limitations to the AIS approach. In AIS training,

we may designate a subset of all addresses (aj, ij) to be “controlled” (learned) by the NN, leaving

all remaining addresses to use the prior faj
as proposal during inference. Expressed in simple

terms, taking an observation y as input, the NN learns to control the random number draws of

latents x during the programs execution in such a way that makes the observed outcome likely.

First, if your simulator is not well-definied then the output of the program will lead a family of

proposal distrubutions that are not representiative of the true posterior. By utilising real-world

simulators we can be confident in the model structure, due to the intensive research phase that

goes to constructing such models, limiting the impact from ill-defined programs. Second, AIS

does not handle nested programs, which is problematic for a large class of real-world simulators.

In Chapters 5 we use AIS 3.3.3, to learn a family of proposal distribution to make computing

the importance weights more sample and computationally efficient, and in Chapter 6 we use

amortized inference to learn surrogate densities so that can we can replace nested inference

procedures and utilise efficient MCMC algorithm to perform inference in nested simulators.

3.4 Challenges in inference
As stated previously in Subsection 2.4.1, constructing inference algorithms for arbitrary prob-

abilistic models is NP-hard. Furthermore, as the dimensionality of the observations increases,

and/or, the dimensionality of the latent space, additional complexities arise, due to sample

efficiency. Probabilistic programs add an additional component to this complexity, as no longer

are we dealing with functions explicitly, but instead we are working with stochastic traces, which

can change in structure during each execution. This is further complicated by having to perform

inference in models of arbitrary complexity, as in the case of UPPLs. Thus, it is more sensible to

focus on making inference procedures in probabilistic programming system more sample efficient

and computationally faster, in generalisable ways. The work in Chapters 4, 5 and 6 focuses

on finding solutions to such challenges by exploring how we can extend language semantics

to exploit program structure in real-world simulators for efficient inferences, and how we can

transform programs into representations that make them amenable to efficient inference schemes,

even if parts of the underlying simulator have to be approximated.
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Abstract

We develop a new Low-level, First-order Prob-
abilistic Programming Language (LF-PPL)
suited for models containing a mix of contin-
uous, discrete, and/or piecewise-continuous
variables. The key success of this language
and its compilation scheme is in its ability
to automatically distinguish parameters the
density function is discontinuous with respect
to, while further providing runtime checks
for boundary crossings. This enables the in-
troduction of new inference engines that are
able to exploit gradient information, while
remaining efficient for models which are not
everywhere differentiable. We demonstrate
this ability by incorporating a discontinuous
Hamiltonian Monte Carlo (DHMC) inference
engine that is able to deliver automated and
efficient inference for non-differentiable mod-
els. Our system is backed up by a mathemat-
ical formalism that ensures that any model
expressed in this language has a density with
measure zero discontinuities to maintain the
validity of the inference engine.

1 Introduction

Non-differentiable densities arise in a huge variety of
common probabilistic models [1, 2]. Often, but not
exclusively, they occur due to the presence of dis-
crete variables. In the context of probabilistic pro-
gramming [3, 4, 5, 6] such densities are often induced
via branching, i.e. if-else statements, where the
predicates depend upon the latent variables of the
model. Unfortunately, performing efficient and scalable
inference in models with non-differentiable densities

∗Equal contribution, †Work completed while at Oxford.
Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

is difficult and algorithms adapted for such problems
typically require specific knowledge about the discon-
tinuities [7, 8, 9], such as which variables the target
density is discontinuous with respect to and catching
occurrences of the sampler crossing a discontinuity
boundary. However, detecting when discontinuities oc-
cur is difficult and problem dependent. Consequently,
automating specialized inference algorithms in proba-
bilistic programming languages (PPLs) is challenging.

To address this problem, we introduce a new Low-level
First-order Probabilistic Programming Language (LF-
PPL), with a novel accompanying compilation scheme.
Our language is based around carefully chosen math-
ematical constraints, such that the set of discontinu-
ities in the density function of any model written in
LF-PPL will have measure zero. This is an essential
property for many inference algorithms designed for
non-differentiable densities [7, 8, 9, 10, 11]. Our accom-
panying compilation scheme automatically classifies
discontinuous and continuous random variables for any
model specified in our language. Moreover, this scheme
can be used to detect transitions across discontinuity
boundaries at runtime, providing important informa-
tion for running such inference schemes.

Relative to previous languages, LF-PPL enables one
to incorporate a broader class of specialized inference
techniques as automated inference engines. In doing
so, it removes the burden from the user of manually
establishing which variables the target is not differen-
tiable with respect to. Its low-level nature is driven
by a desire to establish the minimum language require-
ments to support inference engines tailored to problems
with measure-zero discontinuities, and to allow for a
formal proof of correctness. Though still usable in its
own right, our main intention is that it will be used
as a compilation target for existing systems, or as an
intermediate system for designing new languages.

There are a number of different derivative-based in-
ference paradigms for which LF-PPL can help ex-
tend to non-differentiable setups [7, 8, 9, 10, 11]. Of
particular note, are stochastic variational inference
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(SVI) [12, 13, 14, 15] and Hamiltonian Monte Carlo
(HMC) [16, 17], two of the most widely used approaches
for probabilistic programming inference.

In the context of the former, [9] recently showed that
the reparameterization trick can be generalized to piece-
wise differentiable models when the non-differentiable
boundaries can be identified, leading to an approach
which provides significant improvements over previous
methods that do not explicitly account for the discon-
tinuities. LF-PPL provides a framework that could be
used to apply their approach in a probabilistic program-
ming setting, thereby paving the way for significant
performance improvements for such models.

Similarly, many variants of HMC have been pro-
posed in recent years to improve the sample effi-
ciency and scalability when the target density is non-
differentiable [7, 8, 18, 19, 20]. Despite this, no prob-
abilitic programming systems (PPSs) support these
tailored approaches at present, as the underlying lan-
guages are not able to extract the necessary information
for their automation. The novel compilation approach
of LF-PPL provides key information for running such
approaches, enabling their implementation as auto-
mated inference engines. We realize this potential by
implementing Discontinuous HMC (DHMC) [8] as an
inference engine in LF-PPL, allowing for efficient, auto-
mated, HMC-based inference in models with a mixture
of continuous and discontinuous variables.

2 Background and Related Work

There exists a number of different approaches to prob-
abilistic programming that are built around a variety
of semantics and inference engines. Of particular rel-
evance to our work are PPSs designed around deriva-
tive based inference methods that exploit automatic
differentiation [21], such as Stan [6], PyMC3 [22], Ed-
ward [23], Turing [24] and Pyro [25]. Derivative based
inference algorithms have been an essential component
in enabling these systems to provide efficient and, in
particular, scalable inference, permitting both large
datasets and high dimensional models.

One important challenge for these systems occurs in
dealing with probabilistic programs that contain discon-
tinuous densities and/or variables. From the statistical
perspective, dealing with discontinuities is often impor-
tant for conducting effective inference. For example, in
HMC, discontinuities can cause statistical inefficiency
by inducing large errors in the leapfrog integrator, lead-
ing to potentially very low acceptance rates [7, 8]. In
other words, though the leapfrog integrator remains
a valid, reversible, MCMC proposal even when dis-
continuities break the reversibility of the Hamiltonian
dynamics themselves, they can undermine the effective-
ness of this proposal.

Different methods have been suggested to improve in-
ference performance in models with discontinuous den-
sities. For example, they use sophisticated integrators
in the HMC setting to remain effective when there are
discontinuities. Analogously, in the variational infer-
ence and deep learning literature, reparameterization
methods have been proposed that allow training for
discontinuous targets and discrete variables [9, 26].

However, these advanced methods are, in general, not
incorporated in existing gradient-based PPSs, as ex-
isting systems do not have adequate support to deal
with the discontinuities in the density functions of the
model defined by probabilistic programs. This is usu-
ally necessary to guarantee the correct execution of
those inference methods in an automated fashion, as
many require the set of discontinuities to be of measure
zero. That is, the union of all points where the density
is discontinuous have zero measure with respect to the
Lebesgue measure. In addition to this, some further
methods require knowledge of where the discontinuities
are, or at least catching occurrences of discontinuity
boundaries being crossed.

Of particular relevance to our language and compila-
tion scheme are compilers which compile the program
to an artifact representing a direct acyclic graphical
model (DAG), such as those employed in BUGS [27]
and, in particular, the first order PPL (FOPPL) ex-
plored in [28]. Although the dependency structures
of the programs in our language are established in a
similar manner, unlike these setups, programs in our
language will not always correspond to a DAG, due to
different restrictions on our density factors, as will be
explained in the next section. We also impose necessary
constraints on the language by limiting the functions
allowed to ensure that the advanced inference processes
remain valid.

3 The Language

LF-PPL adopts a Lisp-like syntax, like that of Church
[4] and Anglican [5]. The syntax contains two key
special forms, sample and observe, between which the
distribution of the query is defined and whose interpre-
tation and syntax is analogous to that of Anglican.

More precisely, sample is used for drawing random
variables, returning that variable, and observe factors
the density of the program using existing variables
and fixed observations, returning zero. Both special
forms are designed to take a distribution object as
input, with observe further taking an observed value.
These distribution objects form the elementary random
procedures of the language and are constructed using
one of a number of internal constructors for common
objects such as normal and bernoulli. Figure 1 shows
an example of an LF-PPL program.
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(let [x (sample (uniform 0 1))]
(if (< (- q x) 0)

(observe (normal 1 1) y)
(observe (normal 0 1) y))

(< (- q x) 0))

Figure 1: An example LF-PPL program sampling
x from a uniform random variable and invoking a
choice between two observe statements that factor
the trace weight using different Gaussian likelihoods.
The (< (- q x) 0) term, which is usually written as
((q − x) < 0), represents a Bernoulli variable param-
eterized by q and its boolean value also corresponds
to which branch of the if statement is taken. The
slightly unusual writing of the program is due to its
deliberate low-level nature, with almost all syntactic
sugar removed. One sugar that has been left in for
exposition is an additional term in the let block, i.e.
(let [x e] e e), which can be trivially unraveled.

A distribution object constructor of particular note is
factor, which can only be used with observe. Including
the statement (observe (factor log-p) _) will factor
the program density using the value of (exp log-p),
with no dependency on the observed value itself (here
_). The significance of factor is that it allows the spec-
ification of arbitrary unnormalized target distributions,
quantified as log-p which can be generated internally
in the program, and thus have the form of any deter-
ministic function of the variables that can be written
in the language.

Unlike many first-order PPLs, such as that of [28], LF-
PPL programs do not permit interpretation as DAGs
because we allow the observation of internally sampled
variables and the use of factor. This increases the
range of models that can be encoded and is, for example,
critical in allowing undirected models to be written.
LF-PPL programs need not correspond to a correctly
normalized joint formed by the combination of prior
and likelihood terms. Instead we interpret the density
of a program in the manner outlined by [29, §4.3.2
and §4.4.3], noting that for any LF-PPL program, the
number of sample and observe statements (i.e. nx and
ny in their notation) must be fixed, a restriction that
is checked during the compilation.

To formalize the syntax of LF-PPL, let us use x for
a real-valued variable, c for a real number, op for an
analytic primitive operation on reals, such as +, -,
*, / and exp, and d for a distribution object whose
density is defined with respect to a Lebesgue measure
and is piecewise smooth under analytic partition (See
Definition 1). Then the syntax of expressions e in our
language are given as:
e ::=x | c | (op e . . . e) | (if (< e 0) e e) | (let [x e] e)
| (sample (d e . . . e)) | (observe (d e . . . e) c)

Our syntax is deliberately low-level to permit theoret-

ical analysis and aid the exposition of the compiler.
However, common syntactic sugar such as for-loops
and higher-level branching statements can be trivially
included using straightforward unravellings. Similarly,
we can permit discrete variable distribution objects by
noting that these can themselves be desugared to a com-
bination of continuous random variables and branching
statements. Thus, it is straightforward to extend this
minimalistic framework to a more user-friendly lan-
guage using standard compilation approaches, such
that LF-PPL will form an intermediate representation.
For implementation and code, see https://github.

com/bradleygramhansen/PyLFPPL.

4 Compilation Scheme

We now provide a high-level description of how the
compilation process works. Specifically, we will show
how it transforms an arbitrary LF-PPL program to a
representation that can be exploited by an inference
engine that makes of use of discontinuity information.

The compilation scheme performs three core tasks: a)
finding the variables which the target is discontinu-
ous with respect to, b) extracting the density of the
program to a convenient form that can be used by an
inference engine, and c) allowing boundary crossings
to be detected at runtime. Key to providing these fea-
tures is the construction of an internal representation
of the program that specifies the dependency structure
of the variables, the Linearized Intermediate Represen-
tation (LIR). The LIR contains vertices, arc pairs, and
information of the if predicates. Each vertex of the
LIR denotes a sample or observe statement, of which
only a finite and fix number can occur in LF-PPL. The
arcs of the LIR define both the probabilistic and if

condition dependencies of the variables. The former
of these are constructed in same was as is done in the
FOPPL compiler detailed in [28].

Using the dependency structure represented by the
LIR, we can establish which variables are capable of
changing the path taken by a program trace, that is the
change the branch taken by one or more if statements.
Because discontinuities only occur in LF-PPL through
if statements, the target must be continuous with
respect to any variables not capable of changing the
traversed path. We can thus mark these variables
as being “continuous”. Though it is possible for the
target to still be continuous with respect to variables
that appear in, or have dependent variables appearing
in, the branching function of an if statement, such
cases cannot, in general, be statically established. We
therefore mark all such variables as “discontinuous”.

To extract the density to a convenient form for the
inference engine, the compiler transforms the program
into a collection four sets—∆,Γ, D, and F—by recur-
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sively applying the translation rules given in Section 5.2.
Here ∆ specifies the set of all variables sampled in the
program, while Γ specifies only the variables marked as
discontinuous. D represents the density associated with
all the sample statements in a program, while F rep-
resents the density factors originating for the observe

statements, along with information on the program re-
turn value. These densities are themselves represented
through a collection of smooth density terms and indi-
cator functions truncating them into disjoint regions,
each corresponding to a particular program path. This
construction will be discussed in depth in Section 5.2.

To catch boundary crossings at run time, each if pred-
icate is assigned a unique boolean variable within the
LIR. We refer to these variables as branching variables.
The boolean value of the branching variable denotes
whether the current sample falls into the true or false

branch of the corresponding if statement and is used
to signal boundary crossings at runtime. Specifically, if
one branching variable changes its boolean value, this
indicates that at least one sampled variables effecting
that if predicate has crossed the boundary. The infer-
ence engine can therefore track changes in the set of
all Boolean values to catch the boundary crossings.

We finish the section by noting two limitations of the
compiler and for discontinuity detection more gener-
ally. Firstly, we note that it is possible to construct
programs which have piecewise smooth densities that
contain regions of zero density. Though it is important
to allow this ability, for example to construct truncated
distributions, it may cause issues for certain inference
algorithms if it causes the target to have disconnected
regions of non-zero density. As analytic densities are
either zero everywhere or “almost-nowhere” (see Sec-
tion 5.1), we (informally) have that all realizations of
a program that take a particular path will either have
zero density or all have a non-zero density. Conse-
quently, it is relatively straight forward to establish if a
program has regions of zero density. However, whether
these regions lead to “gaps” is far more challenging,
and potentially impossible, to establish. Moreover,
constructing inference procedures for such problems is
extremely challenging. We therefore do not attempt to
tackle this issue in the current work.

A second limitation is that changes in the vector of
branching variables is only a sufficient condition for
the occurrence of a boundary crossing. This is because
it is possible for multiple boundaries to be crossed in
a single update that results in the new sample follow-
ing the same path as the old one. For example, when
moving from x = −0.5 to x = 1.5 then a branching
variable corresponding to x3 − x > 0 returns true in
both cases even though we have crossed two bound-
aries. The problem of establishing with certainty that

no boundaries have been crossed when moving between
two points is mathematically intractable in the general
case. As this problem is not specific to the probabilistic
programming setting, we do not give it further con-
sideration here, noting only that it is important from
the perspective of designing inference algorithms that
convergence is not undermined by such occurrences.

5 Mathematical Foundation and
Compilation Details

Our story so far was developed by introducing a low-
level first-order probabilistic programming language
(LF-PPL) and its accompanying compilation scheme.
We shall now expose the underlying mathematical de-
tails, which ensure that discontinuities contained within
the densities of the programs one can compile in LF-
PPL are of a suitable measure. This enables us to
satisfy the requirements of several inference algorithms
for non-differentiable densities. We also provide the
formal translation rules of the LF-PPL, which are built
around these mathematical underpinnings.

5.1 Piecewise Smooth Functions

A function G : Rk → R is analytic if it is infinitely
differentiable and its multivariate Taylor expansion at
any point x0 ∈ Rk absolutely converges to G point-wise
in a neighborhood of x0. Most primitive functions that
we encounter in machine learning and statistics are
analytic, and the composition of analytic functions is
also analytic.

Definition 1. A function G : Rk → R is piecewise
smooth under analytic partition if it has the following
form:

G(x) =

N∑

i=1



Mi∏

j=1

1[pi,j(x) ≥ 0] ·
Oi∏

l=1

1[qi,l(x) < 0] · hi(x)




where

1. the pi,j , qi,l : Rk → R are analytic;

2. the hi : Rk → R are smooth;

3. N is a positive integer or ∞;

4. Mi, Oi are non-negative integers; and

5. the indicator functions
Mi∏

j=1

1[pi,j(x) ≥ 0] ·
Oi∏

l=1

1[qi,l(x) < 0]

for the indices i define a partition of Rk, that is,
the following family forms a partition of Rk:{{

x∈Rk
∣∣∣ ∀j pi,j(x)≥ 0, ∀l qi,l(x)< 0

} ∣∣∣ 1≤ i≤N
}
.

Intuitively, G is a function defined by partitioning Rk
into finitely or countably many regions and using a
smooth function hi within region i. The products
of the indicator functions of these summands form a
partition of Rk, so that only one of these products gets
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evaluated to a non-zero value at x. To evaluate the sum,
we just need to evaluate these products at x one-by-one
until we find one that returns a non-zero value. Then,
we have to compute the function hi corresponding to
this product at the input x. Even though the number
of summands (regions) N in the definition is countably
infinite, we can still compute the sum at a given x.

Theorem 1. If an unnormalized density P : Rn → R+

has the form of Definition 1 and so is piecewise smooth
under analytic partition, then there exists a (Borel)
measurable subset A ⊆ Rn such that P is differentiable
outside of A and the Lebesgue measure of A is zero.

The proof is given in Appendix A. The target density
being almost everywhere differentiable with discontinu-
ities of measure zero is an important property required
by many inference techniques for non-differentiable
models [8]. As we shall prove in Section 5.2, any pro-
gram that can be compiled in LF-PPL constructs a
density in the form of Definition 1, and thus satisfies
this necessary condition.

5.2 Translation Rules

5.2.1 Overview

The compilation scheme e  (∆,Γ, D, F ) translates
a program, which can be denoted as an expression e
according to the syntax in Section 3, to a quadruple of
sets (∆,Γ, D, F ). The first set ∆ represents the set of
all sampled random variables. All variables generated
from sample statements in e will be recognized and
stored in ∆. Variables that have not occurred in any if

predicate are guaranteed to be continuous. Otherwise,
they will be also put in Γ ⊆ ∆, as the overall density is
discontinuous with respect to them. D represents the
densities from sample statements and has the form of
a set of the pairs, i.e. D = {(η1, k1), . . . , (ηND

, kND
)},

where ND is the number of the pairs, η denotes a
product of indicator functions indicating the partition
of the space, and k represents the products of the
densities defined by the sample statements. The last
set F contains the densities from observe statements
and the return expression of e. It is a set of tuples
F = {(ζ1, l1, v1), . . . , (ζNF

, lNF
, vNF

)}, where NF is the
number of the tuples, ζ functions similar to η, l is the
product of the densities defined by observe statements
and v denotes the returning expression.

Given e  (∆,Γ, D, F ), one can then construct the
unnormalized density defined by the program e as

P :=
( ND∑

i=1

ηi·ki
)
·
( NF∑

j=1

ζj ·lj
)

(1)

which by Theorem 2 will be piecewise smooth under
analytic partitions.

Recall that by assumption, the density of each dis-
tribution type d is piecewise smooth under analytic

partition when viewed as a function of a sampled value
and its parameters. Thus, we can assume that the
probability density of a distribution has the form in
Definition 1. For each distribution d, we define a set
of pairs Φ(d)={(ψ1, φ1), . . . , (ψNΦ

, φNΦ
)} where NΦ is

the number of the partitions, ψ denotes the product
of indicator functions indicating the partition of the
space and φ represents a smooth probability density
function within that partition. One can then construct
the probability density function Pd for d from Φ(d). For
given parameters x1, . . . , xs of the distribution d and
a given sample value x0, we let x = (x0, . . . , xs) and
have Φ(d) to be the following set:

Φ(d):=
{(
ψn(x), φn(x)

)∣∣∣ 1≤n≤NΦ,

ψn(x):=

Mi∏

j=1

1[pn,j(x)≥0]·
Oi∏

l=1

1[qn,l(x)<0]
}
.

The probability density function defined by d is,

Pd(x0;x1, . . . , xs) =
∑NΦ

n=1
ψn(x) · φn(x) (2)

For example, given x0 drawn from normal distribu-
tion N (µ, σ), we have Φ(d) = {(1,N (x0 ;µ, σ))} and
Pd(x0;µ, σ) = N (x0 ;µ, σ). Similarly a uniform U(a, b)
sampled variable x0 has Φ(d) as{

(1[x0−a<0], 0) , (1[b−x0<0], 0) ,

(1[x0−a≥0]·1[b−x0≥0], U(x0; a, b))
}
,

and Pd = 1[x0−a≥0]·1[b−x0≥0]·U(x0; a, b). Note that
in practice one can omit the pair (ψn, φn) in Φ(d) when
φn= 0 for simplicity and the probability density in the
region denoting by the corresponding ψn is zero.

5.2.2 Formal Translation Rules

The translation process e  (∆,Γ, D, F ), is defined
recursively on the structure of e. We present this
recursive definition using the following notation

premise

conclusion
which says that if the premise holds, then the con-
clusion holds too. Also, for real-valued functions
f(x1, . . . , xn) and f ′(x1, . . . , xn) on real-valued in-
puts, we write f [xi := f ′] to denote the compo-
sition f(x1, . . . , xi−1, f

′(x1, . . . , xn), xi+1, . . . , xn). We
now define the formal translation rules.

The first two rules define how we map the set of vari-
ables x and the set of constants c, to their unnormalized
density and the values at which they are evaluated.

x ({x}, ∅, {(1, 1)}, {(1, 1, x)})

c (∅, ∅, {(1, 1)}, {(1, 1, c)})
The third rule allows one to translate the primitive
operations op defined in the LF-PPL, such as +, -, *
and / with their argument expressions e1 to en, where
e1 to en will be evaluated first. Note that (ηi, ki) ∈ Di
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represents the enumeration of all (ηi, ki) pairs in Di

and the result of this operation among all Dis is the
possible combination of all their elements. For example,
given three sets D1, D2 and D3 which have three, one
and two pairs respectively as their elements, the result
set D′ will have six pairs. This notation holds to the
rest of the paper.

ei  (∆i,Γi, Di, Fi) for 1 ≤ i ≤ n
D′ = {(∏n

i=1 ηi,
∏n
i=1 ki) | (ηi, ki) ∈ Di}

F ′ = {(∏n
i=1 ζi,

∏n
i=1 li, op (v1, . . . , vn)) | (ζi, li, vi) ∈ Fi}

(op e1 . . . en) (
⋃n
i=1 ∆i,

⋃n
i=1 Γi, D

′, F ′)

The fourth rule for control flow operation if enables us
to translate the predicate (< e1 0), its consequent e2

and alternative e3. This provides us with the semantics
to correctly construct a piecewise smooth function, that
can be evaluated at each of the partitions.

ei  (∆i,Γi, Di, Fi) for i = 1, 2, 3

D′ = {(∏3
i=1 ηi,

∏3
i=1 ki) | (ηi, ki) ∈ Di}

F ′ = {(ζ1 · ζ2 · 1[v1 < 0], l1 · l2, v2),

(ζ1 · ζ3 · 1[v1 ≥ 0], l1 · l3, v3) | (ζi, li, vi) ∈ Fi}
(if (< e1 0) e2 e3) (

⋃3
i=1 ∆i,∆1 ∪ Γ2 ∪ Γ3, D

′, F ′)

The translation rule for the sample statement generates
a random variable from a specific distribution. During
translation, we pick a fresh variable, i.e. a variable
with a unique name to represent this random variable
and add it to the ∆ set. Then we compose the density
of this variable according to the distribution d and
corresponding parameters ei.

ei  (∆i,Γi, Di, Fi) for i = 1, . . . , n

pick a fresh variable z

∆′ = {z} ∪⋃ni=1 ∆i, Γ′ =
⋃n
i=1 Γi

D0 = {(ψ·∏n
i=1 ζi, φ[x := (z, v1, . . . , vn)]) |

(ψ, φ) ∈ Φ(d), (ζi, li, vi) ∈ Fi}
D′ = {(∏n

i=0 ηi,
∏n
i=0 ki) | (ηi, ki) ∈ Di}

F ′ = {(∏n
i=1 ζi,

∏n
i=1 li, z) | (ζi, li, vi) ∈ Fi}

(sample (d e1 . . . en)) (∆′,Γ′, D′, F ′)

The translation rule for the observe statement, different
from the sample expression, factors the density accord-
ing to the distribution object, with all parameters ei
and the observed data c evaluated.
ei  (∆i,Γi, Di, Fi) for i = 1, . . . , n

∆′ =
⋃n
i=1 ∆i, Γ′ =

⋃n
i=1 Γi

D′ = {(∏n
i=1 ηi,

∏n
i=1 ki) | (ηi, ki) ∈ Di}

F ′ = {(ψ ·∏n
i=1 ζi, φ[x := (c, v1, . . . , vn)]·∏n

i=1 li, 0) |
(ψ, φ) ∈ Φ(d), (ζi, li, vi) ∈ Fi}

(observe (d e1 . . . en) c) (∆′,Γ′, D′, F ′)

The translation rule for let expressions first translates
the definition e1 of x and the body e2 of let, and then
joins the results of these translations. When joining

the ∆ and Γ sets, the rule checks whether x appears in
the sets from the translation of e2, and if so, it replaces
x by variable names appearing in e1, an expression that
defines x. Although let is defined as single binding, we
can construct the rules to translate the let expression,
defining and binding multiple variables by properly
desugaring.

ei  (∆i,Γi, Di, Fi) for i = 1, 2

∆0 = {z | (ζ1, l1, v1) ∈ F1 and z occurs free in v1}
∆′ = ∆1 ∪ (∆2 \ {x}) ∪ (if (x ∈ ∆2) then ∆0 else ∅)
Γ′ = Γ1 ∪ (Γ2 \ {x}) ∪ (if (x ∈ Γ2) then ∆0 else ∅)
D′ = {(ζ1·η1·η2[x := v1], k1·k2[x := v1]) |

(ηi, ki) ∈ Di, (ζ1, l1, v1) ∈ F1}
F ′ = {(ζ1·ζ2[x := v1], l1·l2[x := v1], v2[x := v1])

| (ζi, li, vi) ∈ Fi}
(let [x e1] e2) (∆′, Γ′, D′, F ′)

Theorem 2. If e is an expression that does not con-
tain any free variables and e (∆,Γ, D, F ), then the
unnormalized density defined by e is in the form of
Equation 1. It is a real-valued function on the vari-
ables in ∆, which is non-negative and piecewise smooth
under analytic partition as per Definition 1.

The proof is provided in Appendix B. By providing
this set of mathematical translations we have been able
to prove that any such program written in LF-PPL
constructs a density in the form of Definition 1, which
is piecewise smooth under analytic partitions. Together
with Theorem 1, we further show that this density is
almost everywhere differentiable and the discontinuities
are of measure zero, a necessary condition for several
inference schemes such as DHMC [8].

5.3 A Compilation Example

We now present a simple example of how the com-
piler transforms the program epp in Figure 1 to the
quadruple (∆pp,Γpp, Dpp, Fpp). The translation rules
are applied recursively and within each rule, all indi-
vidual components are compiled eagerly first. Namely,
we step into each individual component and step out
until it is fully compiled. A desugared version of epp is:

(let [x (sample (uniform 0 1))]
(let [x_ (if (< (- q x) 0)

(observe (normal 1 1) y)
(observe (normal 0 1) y))]

(< (- q x) 0)))

where q and y are constant and x is not used. It
follows the following steps.

i. Rule (let [x e1,out] e2,out). We start by looking
at the outer let expressions, with e1,out being the
sample statement and e2,out corresponding to the
entire inner let block. Before we can generate the
output of this rule, we step into e1,out and e2,out

and compile them accordingly.



Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood

ii. Rule (sample (d e1 e2)). We then apply the
sample rule on e1,out := (sample (uniform 0 1))

from i, with each of its components evaluated
first. For (uniform 0 1), 0 and 1 are constant
and we have 0  (∅, ∅, {(1, 1)}, {(1, 1, 0)})
and 1  (∅, ∅, {(1, 1)}, {(1, 1, 1)}). d repre-
sents uniform distribution and has the form
Φ(d) = {(1[x ≥ 0]·1[1−x ≥ 0], U(· ; 0, 1))}. Af-
ter combining each set following the rule,
with a fresh variable z, we have e1,out  (
{z}, ∅, {(1[z≥0]·1[1−z≥0],U(z; 0, 1))}, {(1, 1, z)}

)
.

iii. Rule (let [x e1,in] e2,in). We now step into e2,out

from i with itself being a let expression. e1,in is the
entire if statement and e2,in is the returning value
(< (- q x) 0). Similarly, we need to compile e1,in

and e2,in first before having the result for e2,out.

iv. Rule (if (< e1 0) e2 e3). To apply the if rule
on e1,in, we again need to compile its each indi-
vidual component first. We start with its predi-
cate e1:=(- q x), which follows the rule (op e1 e2).
Then e1  

(
{x}, ∅, {(1, 1)}, {(1, 1, (q−x))}

)
with

(q − x) as a operation - applied to q and x.

e2 and e3 both follow (observe (d e1 e2) c).
Take e2 := (observe (normal 1 1) y) as an
example, 1 is constant and d is the normal

distribution and has Φ(d) = {(1,N (· ; 1, 1))}.
We combine each set and have e2  (
∅, ∅, {(1, 1)}, {(1, N (y; 1, 1), 0)}

)
. Similarly,

e3  (∅, ∅, {(1, 1)}, {(1, N (y; 0, 1), 0)}).
With e1, e2 and e3 all evaluated, we can now con-
tinue the if rule. The key features are to extract
variables in e1 and put into Γ and to construct the
indicator functions from e1 and take the densities
on each branch respectively. As a result, e1,in com-
piles to ∆ = {x}, Γ = {x}, D = {(1, 1)} and F ={(
1[q−x<0],N (y; 1, 1), 0

)
,
(
1[q−x≥0],N (y; 0, 1), 0

)}
.

v. Rule (op e1 . . . en). For e2,in in iii, (< (- q x) 0)

compiles to ({x}, ∅, {(1, 1)}, {(1, 1, (q−x < 0))}).
vi. Result of the inner let. Together with the outcome

from iv and v, we can continue compiling the inner
let block as in iii, and it is translated to

∆ = {x}, Γ = {x},
D =

{
(1[q−x < 0], 1), (1[q−x ≥ 0], 1)

}

F =
{

(1[q−x < 0], N (y; 1, 1), (q−x < 0)),
(1[q−x ≥ 0], N (y; 0, 1), (q−x < 0))

}

vii. Result of the outer let. Finally, with e1,out com-
piled in ii and e2,out in vi, we step out to i. It is
worth to emphasize that the variables ∆ are the
sampled ones rather than what are named in the
let expression, i.e. x and x . Here x is replaced
by z as declared in e1,out by following the let rule,
and we have the final quadruple output:

100 101 102 103 104 105

Sample Size
10 7

10 6
10 5
10 4

10 3
10 2
10 1

100

M
SE

NUTS-MwG(pymc3)
DHMC

Figure 2: Mean Squared Error for the posterior esti-
mates of the true posterior of the cluster means µ1:2.
We compare the results from our unoptimized DHMC
and the optimized PyMC3 NUTS with Metropolis-
within-Gibbs, and show that the performance between
the two is comparable for the same computation budget.
The median of MSE (dashed lines) with 20%/80% con-
fidence intervals (shaded regions) over 20 independent
runs are plotted.

∆pp = {z}, Γpp = {z},
Dpp =

{(
1[z≥0]·1[1−z≥0]·1[q−z<0], U(z; 0, 1)

)
,

(
1[z≥0]·1[1−z≥0]·1[q−z≥0], U(z; 0, 1)

)}

Fpp =
{(
1[q−z<0], N (y; 1, 1), (q−z<0)

)
,(

1[q−z≥0], N (y; 0, 1), (q−z<0)
)}

From the quadruple, we have the overall density as
P = 1[z≥0]·1[1−z≥0]·1[q−z<0]·U(z; 0, 1)·N (y; 1, 1) +
1[z≥0]·1[1−z≥0]·1[q−z≥0]·U(z; 0, 1)·N (y; 0, 1). We
can also detect when any random variable in Γ, in
this case z, has crossed the discontinuity, by checking
the boolean value of the predicate of the if statement
(< (- q x) 0), as discussed in Section 4

6 Example Inference Engine: DHMC

We shall now demonstrate an example inference al-
gorithm that is compatible with LF-PPL. Specifi-
cally, we provide an implementation of discontinuous
HMC (DHMC)[8], a variant of HMC for performing
statistically efficient inference on probabilistic models
with non-differentiable densities, using LF-PPL as a
compilation target. This satisfies the necessary require-
ment of DHMC that the target density being piecewise
smooth with discontinuities of measure zero. Given
the quadruple output from LF-PPL, DHMC updates
variables in Γ by the coordinate-wise integrator and the
rest of the variables in ∆\Γ by the standard leapfrog
integrator. In an existing PPS without a special sup-
port, the user would be required to manually specify all
the discontinuous and continuous variables, in addition
to implementing DHMC accordingly. See Appendix C
for further details. on DHMC theory and for the gen-
eralized DHMC for a PPS algorithm.

6.1 Gaussian Mixture Model (GMM)

In our first example, we demonstrate how a classic
model, namely a Gaussian mixture model, can be en-
coded in LF-PPL. The density of the GMM contains a
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Figure 3: We compare DHMC against HMC on the worst mean absolute error (dashed lines) with the 20%/80%
confidence intervals (shaded regions) over 20 independent runs for dimensions D = 10, 50, 100, 200, 500 (left to
right). We demonstrate how the sample efficiency decreases with respect to sample size (top row) and with
respect to runtime (bottom row) respectively as dimensionality increases. We see that the performance of HMC
deteriorates significantly more than DHMC as the dimensionality increases.

mixture of continuous and discrete variables, where the
discrete variables lead to discontinuities in the density.
We construct the GMM as follows:

µk ∼ N (µ0, σ0), k = 1, . . . ,K

zn ∼ Categorical(p0), n = 1, . . . , N

yn |zn, µzn ∼ N (µzn , σzn), n = 1, . . . , N

where µ1:K , z1:N are latent variables, y1:N are
observed data with K as the number of clusters
and N the total number of data. The Categorical
distribution is constructed by a combination of
uniform draws and nested if expressions, as shown
in Appendix D. For our experiments, we consid-
ered a simple case with µ0 = 0, σ0 = 2, σz1:N

= 1
and p0 = [0.5, 0.5], along with the synthetic dataset:
y1:N = [−2.0,−2.5,−1.7,−1.9,−2.2, 1.5, 2.2, 3, 1.2, 2.8].
We compared the Mean Squared Error (MSE) of
the posterior estimates for the cluster means of
both an unoptimized version of DHMC and an
optimized implementation of NUTS with Metropolis-
within-Gibbs (MwG) in PyMC3 [22], with the same
computation budget. We take 105 samples and
discard 104 for burn in. We find that our DHMC
implementation, performs comparable to the NUTS
with MwG approach. The results are shown in Figure 2
as a function of the number of samples.

6.2 Heavy Tail Piecewise Model

In our next example we show how the efficiency of
DHMC improves, relative to vanilla HMC, on discon-
tinuous target distributions as the dimensionality of the
problem increases. We consider the following density[7]
which represents a hyperbolic-like potential function,

π(x) =





exp(−
√
xTAx) if ||x||∞ ≤ 3

exp(−
√
xTAx− 1) if 3 < ||x||∞ ≤ 6

0 otherwise

It generates planes of discontinuities along the bound-
aries defined by the if expressions. To write this as
a density in our language we make use of the factor

distribution object as shown in Appendix D.

The results in Figure 3 provide a comparison between
the DHMC and the standard HMC on the worst mean
absolute error [7] as a function of the number of itera-

tions and time, WMAE(N) = 1
N max
d=1,...,D

∣∣∑N

n=1
x

(n)
d

∣∣.
We see that as the dimensionality of the model in-
creases, the per-sample performance of HMC deterio-
rates rapidly as seen in the top row of Figure 3. Even
though DHMC is more expensive per iteration than
HMC due to its sequential nature, in higher dimen-
sions, the additional time costs occurred by DHMC is
much less than the rate at which HMC performance
deteriorates. The reason for this is that the acceptance
rate of the HMC sampler degrades with increasing di-
mension, while the coordinate-wise integrator of the
DHMC sampler circumvents this.

7 Conclusion

In this paper we have introduced a Low-level First-
order Probabilistic Programming Language (LF-PPL)
and an accompanying compilation scheme for programs
that have non-differentiable densities. We have theo-
retically verified the language semantics via a series of
translations rules. This ensures programs that compile
in our language contain only discontinuities that are of
measure zero. Therefore, our language together with
the compilation scheme can be used in conjunction with
other scalable inference algorithms such as adapted ver-
sions of HMC and SVI for non-differentiable densities,
as we have demonstrated with one such variant of HMC
called discontinuous HMC. It provides a road map for
incorporating other inference algorithms into PPSs and
shows the performance improvement of these inference
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algorithms over existing ones.
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A Proof of Theorem 1

Proof. Assume that P is piecewise smooth under analytic partition. Thus,

P(x) =

N∑

i=1

Mi∏

j=1

1[pi,j(x) ≥ 0] ·
Oi∏

l=1

1[qi,l(x) < 0] · hi(x) (3)

for some N,Mi, Oi and pi,j , qi,l, hi that satisfy the properties in Definition 1.

We use one well-known fact: the zero set {x ∈ Rn | p(x) = 0} of an analytic function p is the entire Rn or has zero
Lebesgue measure [30]. We apply the fact to each pi,j and deduce that the zero set of pi,j is Rn or has measure
zero. Note that if the zero set of pi,j is the entire Rn, the indicator function 1[pi,j ≥ 0] becomes the constant-1
function, so that it can be omitted from the RHS of equation (3). In the rest of the proof, we assume that this
simplification is already done so that the zero set of pi,j has measure zero for every i, j.

For every 1 ≤ i ≤ N , we decompose the i-th region

Ri = {x | pi,j ≥ 0 and qi,l(x) < 0 for all j, l} (4)

to

R′i = {x | pi,j > 0 and qi,l(x) < 0 for all j, l}
R′′i = Ri \R′i.

(5)

Note that R′i is open because the pi,j and qi,l are analytic and so continuous, both {r ∈ R | r > 0} and
{r ∈ R | r < 0} are open, and the inverse images of open sets by continuous functions are open. This means that
for each x ∈ R′i, we can find an open ball at x inside R′i so that P(x′) = hi(x

′) for all x′ in the ball. Since hi is
smooth, this implies that P is differentiable at every x ∈ R′i.
For the other part R′′i , we notice that

R′′i ⊆
Mi⋃

j=1

{x | pi,j(x) = 0}.

The RHS of this equation is a finite union of measure-zero sets, so it has measure zero. Thus, R′′i also has measure
zero as well.

Since {Ri}1≤i≤N is a partition of Rn, we have that

Rn =

N⋃

i=1

R′i ∪
N⋃

i=1

R′′i .

The density P is differentiable on the union of R′i’s. Also, since the union of finitely or countably many measure-
zero sets has measure zero, the union of R′′i ’s has measure zero. Thus, we can set the set A required in the
theorem to be this second union.

B Proof of Theorem 2

Proof. As shown in Equation 1,

P :=
( ND∑

i=1

ηi·ki
)
·
( NF∑

j=1

ζj ·lj
)

it suffices to show that both factors are non-negative and piecewise smooth under analytic partition, because such
functions are closed under multiplication.

We prove a more general result. For any expression e, let Free(e) be the set of its free variables. Also, if a function
G in Definition 1 satisfies additionally that its hi’s are analytic, we say that this function G is piecewise analytic
under analytic partition. We claim that for all expressions e (which may contain free variables), if e (∆,Γ, D, F ),

where D = {(ηi, ki) | 1≤i≤ND} and F = {(ζj , lj , vj) | 1≤j≤NF }, then
(∑ND

i=1 ηi·ki
)

and
(∑NF

j=1 ζj ·lj
)

are non-

negative functions on variables in Free(e) ∪∆ and they are piecewise analytic under analytic partition, as k and

l′ in the sum are analytic. These two properties in turn imply that
(∑ND

i=1 ηi·ki
)
·
(∑NF

j=1 ζj ·lj
)

is a function on

variables in Free(e) ∪∆ and it is also piecewise analytic (and thus piecewise smooth) under analytic partition.
Thus, the desired conclusion follows. Regarding our claim, we can prove it by induction on the structure of the
expression e.
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C Discontinuous Hamiltonian Monte Carlo

The discontinuous HMC (DHMC) algorithm was proposed by [8]. It uses a coordinate-wise integrator, Algorithm 1,
coupled with a Laplacian momentum to perform inference in models with non-differentiable densities. The
algorithm works because the Laplacian momentum ensures that all discontinuous parameters move in steps of
±mbε for fixed constants mb and step size ε, where the index b is associated to each discontinuous coordinate.
These properties are advantages because they remove the need to know where the discontinuity boundaries
between each region are; the change of the potential energy in the state before and after the ±mbε move provides
us with information of whether we have enough kinetic energy to move into this new region. If we do not have
enough energy we reflect backwards pb = −pb. Otherwise, we move to this new region with a proposed coordinate
update x∗b and momentum pb −mb · sign(pb) ·∆U . This is in contrast to algorithms such as Reflect, Refract
HMC [7], that explictly need to know where the discontinuities boundaries are. Hence, it is important to have a
compilation scheme that enables one to do that.

The addition of the random permutation φ of indices b is to ensure that the coordinate-wise integrator satisfies
the criterion of reversibility in the Hamiltonian. Although the integrator does not reproduce the exact solution, it
nonetheless preserves the Hamiltonian exactly, even if the density is discontinuous. See Lemma 1 and Theorems
2-3 in [8]. This yields a rejection-free proposal.

Algorithm 1 Coordinate-wise Integrator. A random permutation φ on {1, . . . , B} is appropriate if the induced
random sequences (φ(1), . . . , φ(|B|)) and (φ(|B|), . . . , φ(1)) have the same distribution

1: function Coordinatewise(x,p, ε, U)
2: pick an appropriate random permutation φ on B
3: for i = 1, . . . , B do
4: b← φ(i)
5: x∗ ← x
6: x∗b ← x∗b + εmb · sign(pb)
7: ∆U ← U(x∗)− U(x)
8: if K(pb) = mb|pb| > ∆U then
9: xb ← x∗b

10: pb ← pb −mb · sign(pb) ·∆U
11: else
12: pb ← −pb
13: end if
14: end for
15: return xb,pb
16: end function

The DHMC algorithm [8] adapted for LF-PPL and our compilation scheme is as follows:
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Algorithm 2 Discontinuous HMC Integrator for the LF-PPL.
χ is a map from random-variable names n in ∆ to their values xn, H is the total Hamiltonian, ε > 0 is the step
size, and L is the trajectory length.

1: function DHMC-LFPPL(∆,Γ, D, F,x,p, H, ε, L)
2: B = Γ; A = ∆ \ Γ
3: for a ∈ A do . a represents the set of continuous variables
4: x0

a ← xa; pa ∼ N (0,1)
5: end for
6: for b ∈ B do
7: x0

b ← xb; pb ∼ Laplace(0,1) . b represents the set of discontinuous variables
8: end for
9: ∀a ∈ A, x0

a ← xa; pa ∼ N (0,1) . A represents the set of continuous variables
10: ∀b ∈ B, x0

b ← xb; pb ∼ Laplace(0,1) . B represents the set of discontinuous variables
11: U ← −LogJointDensity(D,F )
12: for i = 1 to L do
13: UA ← U with names in B replaced by their values in xiB
14: (xiA,p

i
A)←Halfstep1(xi−1

A ,pi−1
A , ε, UA)

15: UB ← U with names in A replaced by their values in xiA
16: (xiB ,p

i
B)←Coordinate-wise(xi−1

B ,pi−1
B , ε, UB)

17: UA ← U with names in B replaced by their values in xiB
18: (xiA,p

i
A)←Halfstep2(xiA,p

i
A, ε, UA)

19: end for
20: xL ← xLA ∪ xLB , pL ← pLA ∪ pLB ;
21: x∗,p∗ ← Evaluate(F, xL,pL)
22: α ∼ Uniform(0, 1)
23: if α > min{1, exp(H(x,p)−H(x∗,p∗))} then
24: return x∗,p∗

25: else
26: return x,p
27: end if
28: end function
29: function HALFSTEP1(x,p, ε, U)
30: p′ ← p− ε

2∇xU(x)
31: x′ ← x + ε

2∇p′K(p′)
32: return (x′,p′)
33: end function
34: function HALFSTEP2(x,p, ε, U)
35: x′ ← x + ε

2∇pK(p)
36: p′ ← p− ε

2∇x′U(x′)
37: return (x′,p′)
38: end function
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D Program code

(let [y (vector -2.0 -2.5 ... 2.8)
pi [0.5 0.5]
z1 (sample (categorical pi))
...
z10(sample (categorical pi))
mu1 (sample (normal 0 2))
mu2 (sample (normal 0 2))
mus (vector mu1 mu2)]

(if (< (- z1) 0)
(observe (normal mu1 1) (nth y 0))
(observe (normal mu2 1) (nth y 0)))

...
(if (< (- z10) 0)

(observe (normal mu1 1) (nth y 9))
(observe (normal mu2 1) (nth y 9)))

(mu1 mu2 z1 ... z10))

Figure 4: The LF-PPL version of the Gaussian mixture
model detailed in Section 6.

(let [x (sample (uniform -6 6))
abs-x (max x (- x))
z (- (sqrt (* x (* A x))))]

(if (< (- abs-x 3) 0)
(observe (factor z) 0)
(observe (factor (- z 1)) 0))

x)

Figure 5: The LF-PPL version of the heavy-tailed model
detailed in Section 6.
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Atılım Güneş Baydin,1 Lukas Heinrich,2 Wahid Bhimji,3 Bradley Gram-Hansen,1 Lei Shao,4
Saeid Naderiparizi,5 Andreas Munk,5 Jialin Liu,3 Gilles Louppe6

Lawrence Meadows,4 Philip Torr,1 Victor Lee,4 Prabhat,3 Kyle Cranmer,7 Frank Wood5

1University of Oxford, 2CERN, 3Lawrence Berkeley National Lab, 4Intel Corporation
5University of British Columbia, 6University of Liege, 7New York University

Abstract

We present a novel probabilistic programming framework that couples directly to
existing large-scale simulators through a cross-platform probabilistic execution
protocol, which allows general-purpose inference engines to record and control ran-
dom number draws within simulators in a language-agnostic way. The execution of
existing simulators as probabilistic programs enables highly interpretable posterior
inference in the structured model defined by the simulator code base. We demon-
strate the technique in particle physics, on a scientifically accurate simulation of
the τ (tau) lepton decay, which is a key ingredient in establishing the properties of
the Higgs boson. Inference efficiency is achieved via inference compilation where
a deep recurrent neural network is trained to parameterize proposal distributions
and control the stochastic simulator in a sequential importance sampling scheme,
at a fraction of the computational cost of a Markov chain Monte Carlo baseline.

1 Introduction

Complex simulators are used to express causal generative models of data across a wide segment of the
scientific community, with applications as diverse as hazard analysis in seismology [49], supernova
shock waves in astrophysics [36], market movements in economics [73], and blood flow in biology
[72]. In these generative models, complex simulators are composed from low-level mechanistic
components. These models are typically non-differentiable and lead to intractable likelihoods, which
renders many traditional statistical inference algorithms irrelevant and motivates a new class of
so-called likelihood-free inference algorithms [48].

There are two broad strategies for this type of likelihood-free inference problem. In the first, one uses a
simulator indirectly to train a surrogate model endowed with a likelihood that can be used in traditional
inference algorithms, for example approaches based on conditional density estimation [56, 70, 77, 85]
and density ratio estimation [30, 35]. Alternatively, approximate Bayesian computation (ABC)
[81, 87] refers to a large class of approaches for sampling from the posterior distribution of these
likelihood-free models, where the original simulator is used directly as part of the inference engine.
While variational inference [22] algorithms are often used when the posterior is intractable, they are
not directly applicable when the likelihood of the data generating process is unknown [84].

The class of inference strategies that directly use a simulator avoids the necessity of approximating
the generative model. Moreover, using a domain-specific simulator offers a natural pathway for
inference algorithms to provide interpretable posterior samples. In this work, we take this approach,
extend previous work in universal probabilistic programming [44, 86] and inference compilation
[63, 65] to large-scale complex simulators, and demonstrate the ability to execute existing simulator
codes under the control of general-purpose inference engines. This is achieved by creating a cross-
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Figure 1: Top left: overall framework where the PPS is controlling the simulator. Bottom left:
probabilistic execution of a single trace. Right: LSTM proposals conditioned on an observation.

platform probabilistic execution protocol (Figure 1, left) through which an inference engine can
control simulators in a language-agnostic way. We implement a range of general-purpose inference
engines from the Markov chain Monte Carlo (MCMC) [25] and importance sampling [34] families.
The execution framework we develop currently has bindings in C++ and Python, which are languages
of choice for many large-scale projects in science and industry. It can also be used by any other
language that support flatbuffers1 pending the implementation of a lightweight front end.

We demonstrate the technique in a particle physics setting, introducing probabilistic programming as
a novel tool to determine the properties of particles at the Large Hadron Collider (LHC) [1, 29] at
CERN. This is achieved by coupling our framework with SHERPA2 [42], a state-of-the-art Monte
Carlo event generator of high-energy reactions of particles, which is commonly used with Geant43

[5], a toolkit for the simulation of the passage of the resulting particles through detectors. In particular,
we perform inference on the details of the decay of a τ (tau) lepton measured by an LHC-like detector
by controlling the SHERPA simulation (with minimal modifications to the standard software), extract
posterior distributions, and compare to ground truth. To our knowledge this is the first time that
universal probabilistic programming has been applied in this domain and at this scale, controlling a
code base of nearly one million lines of code. Our approach is scalable to more complex events and
full detector simulators, paving the way to its use in the discovery of new fundamental physics.

2 Particle Physics and Probabilistic Inference

Our work is motivated by applications in particle physics, which studies elementary particles and their
interactions using high-energy collisions created in particle accelerators such as the LHC at CERN.
In this setting, collision events happen many millions of times per second, creating cascading particle
decays recorded by complex detectors instrumented with millions of electronics channels. These
experiments then seek to filter the vast volume of (petabyte-scale) resulting data to make discoveries
that shape our understanding of fundamental physics.

The complexity of the underlying physics and of the detectors have, until now, prevented the
community from employing likelihood-free inference techniques for individual collision events.
However, they have developed sophisticated simulator packages such as SHERPA [42], Geant4 [5],
Pythia8 [79], Herwig++ [16], and MadGraph5 [6] to model physical processes and the interactions of
particles with detectors. This is interesting from a probabilistic programming point of view, because

1 https://google.github.io/flatbuffers/ 2 Simulation of High-Energy Reactions of Particles.
https://sherpa.hepforge.org/ 3 Geometry and Tracking. https://geant4.web.cern.ch/

2



these simulators are essentially very accurate generative models implementing the Standard Model of
particle physics and the passage of particles through matter (i.e., particle detectors). These simulators
are coded in Turing-complete general-purpose programming languages, and performing inference in
such a setting requires using inference techniques developed for universal probabilistic programming
that cannot be handled via more traditional inference approaches that apply to, for example, finite
probabilistic graphical models [58]. Thus we focus on creating an infrastructure for the interpretation
of existing simulator packages as probabilistic programs, which lays the groundwork for running
inference in scientifically-accurate probabilistic models using general-purpose inference algorithms.

The τ Lepton Decay. The specific physics setting we focus on in this paper is the decay of a τ lepton
particle inside an LHC-like detector. This is a real use case in particle physics currently under active
study by LHC physicists [2] and it is also of interest due to its importance to establishing the properties
of the recently discovered Higgs boson [1, 29] through its decay to τ particles [12, 33, 46, 47]. Once
produced, the τ decays to further particles according to certain decay channels. The prior probabilities
of these decays or “branching ratios” are shown in Figure 8 (appendix).

3 Related Work

3.1 Probabilistic Programming

Probabilistic programming languages (PPLs) extend general-purpose programming languages with
constructs to do sampling and conditioning of random variables [86]. PPLs decouple model specifica-
tion from inference: a model is implemented by the user as a regular program in the host programming
language, specifying a model that produces samples from a generative process at each execution. In
other words, the program produces samples from a joint prior distribution p(x,y) = p(y|x)p(x) that
it implicitly defines, where x and y denote latent and observed random variables, respectively. The
program can then be executed using a variety of general-purpose inference engines available in the
PPL to obtain p(x|y), the posterior distribution of latent variables x conditioned on observed vari-
ables y. Universal PPLs allow the expression of unrestricted probability models in a Turing-complete
fashion [43, 89, 90], in contrast to languages such as Stan [28, 39] that target the more restricted
model class of probabilistic graphical models [58]. Inference engines available in PPLs range from
MCMC-based lightweight Metropolis Hastings (LMH) [89] and random-walk Metropolis Hastings
(RMH) [62] to importance sampling (IS) [11] and sequential Monte Carlo [34]. Modern PPLs such
as Pyro [20] and Edward2 [32, 82, 83] use gradient-based inference engines including variational
inference [52, 57] and Hamiltonian Monte Carlo [53, 69] that benefit from modern deep learning
hardware and automatic differentiation [18] features provided by PyTorch [71] and TensorFlow
[3] libraries. Another way of making use of gradient-based optimization is to combine IS with
deep-learning-based proposals trained with data sampled from the probabilistic program, resulting in
the inference compilation (IC) algorithm [63] that enables amortized inference [40].

3.2 Data Analysis in Particle Physics

Inference for an individual collision event in particle physics is often referred to as reconstruction [61].
Reconstruction algorithms can be seen as a form of structured prediction: from the raw event data they
produce a list of candidate particles together with their types and point-estimates for their momenta.
The variance of these estimators is characterized by comparison to the ground truth values of the latent
variables from simulated events. Bayesian inference on the latent state of an individual collision is
rare in particle physics, given the complexity of the latent structure of the generative model. Until now,
inference for the latent structure of an individual event has only been possible by accepting a drastic
simplification of the high-fidelity simulators [4, 7–10, 15, 23, 27, 37, 38, 45, 59, 66, 67, 78, 80]. In
contrast, inference for the fundamental parameters is based on hierarchical models and probed at the
population level. Recently, machine learning techniques have been employed to learn surrogates for
the implicit densities defined by the simulators as a strategy for likelihood-free inference [24].

Currently particle physics simulators are run in forward mode to produce substantial datasets that
often exceed the size of datasets from actual collisions within the experiments. These are then reduced
to considerably lower dimensional datasets of a handful of variables using physics domain knowledge,
which can then be directly compared to collision data. Machine learning and statistical approaches
for classification of particle types or regression of particle properties can be trained on these large
pre-generated datasets produced by the high-fidelity simulators developed over many decades [13, 55].
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The field is increasingly employing deep learning techniques allowing these algorithms to process
high-dimensional, low-level data [14, 17, 31, 54, 74]. However, these approaches do not estimate the
posterior of the full latent state nor provide the level of interpretability our probabilistic inference
framework enables by directly tying inference results to the latent process encoded by the simulator.

4 Probabilistic Inference in Large-Scale Simulators

In this section we describe the main components of our probabilistic inference framework, including:
(1) a novel PyTorch-based [71] PPL and associated inference engines in Python, (2) a probabilistic
programming execution protocol that defines a cross-platform interface for connecting models and
inference engines implemented in different languages and executed in separate processes, (3) a
lighweight C++ front end allowing execution of models written in C++ under the control of our PPL.

4.1 Designing a PPL for Existing Large-Scale Simulators

A shortcoming of the state-of-the-art PPLs is that they are not designed to directly support existing
code bases, requiring one to implement any model from scratch in each specific PPL. This limitation
rules out their applicability to a very large body of existing models implemented as domain-specific
simulators in many fields across academia and industry. A PPL, by definition, is a programming
language with additional constructs for sampling random values from probability distributions and
conditioning values of random variables via observations [44, 86]. Domain-specific simulators in
particle physics and other fields are commonly stochastic in nature, thus they satisfy the behavior
random sampling, albeit generally from simplistic distributions such as the continuous uniform. By
interfacing with these simulators at the level of random number sampling (via capturing calls to the
random number generator) and introducing a construct for conditioning, we can execute existing
stochastic simulators as probabilistic programs. Our work introduces the necessary framework
to do so, and makes these simulators, which commonly represent the most accurate models and
understanding in their corresponding fields, subject to Bayesian inference using general-purpose
inference engines. In this setting, a simulator is no longer a black box, as all predictions are directly
tied into the fully-interpretable structured model implemented by the simulator code base.

To realize our framework, we implement a universal PPL called pyprob,4 specifically designed to
execute models written not only in Python but also in other languages. Our PPL currently has two
families of inference engines:5 (1) MCMC of the lightweight Metropolis–Hastings (LMH) [89] and
random-walk Metropolis–Hastings (RMH) [62] varieties, and (2) sequential importance sampling (IS)
[11, 34] with its regular (i.e., sampling from the prior) and inference compilation (IC) [63] varieties.
The IC technique, where a recurrent neural network (NN) is trained in order to provide amortized
inference to guide (control) a probabilistic program conditioning on observed inputs, forms our main
inference method for performing efficient inference in large-scale simulators. Because IC training
and inference uses dynamic reconfiguration of NN modules [63], we base our PPL on PyTorch
[71], whose automatic differentiation feature with support for dynamic computation graphs [18] has
been crucial in our implementation. The LMH and RMH engines we implement are specialized for
sampling in the space of execution traces of probabilistic programs, and provide a way of sampling
from the true posterior and therefore provide a baseline—at a high computational cost.

A probabilistic program can be expressed as a sequence of random samples (xt, at, it)Tt=1, where
xt, at, and it are respectively the value, address,6 and instance (counter) of a sample, the execution
of which describes a joint probability distribution between latent (unobserved) random variables
x := (xt)

T
t=1 and observed random variables y := (yn)

N
n=1 given by

p(x,y) :=

T∏

t=1

fat (xt|x1:t−1)
N∏

n=1

gn(yn|x≺n) , (1)

4 https://github.com/pyprob/pyprob 5 The selection of these families was motivated by working with
existing simulators through an execution protocol (Section 4.2) precluding the use of gradient-based inference
engines. We plan to extend this protocol in future work to incorporate differentiability. 6 An “address” is a
label uniquely identifying each sampling or conditioning event in the execution of the program. In our system it
is based on a concatenation of stack frames (Table 1) leading up to the point of each random number draw, and it
also includes a suffix identifying the type of associated probability distribution.
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where fat(·|x1:t−1) denotes the prior probability distribution of a random variable with address at
conditional on all preceding values x1:t−1, and gn(·|x≺n) is the likelihood density given the sample
values x≺n preceding observation yn. Once a model p(x,y) is expressed as a probabilistic program,
we are interested in performing inference in order to get posterior distributions p(x|y) of latent
variables x conditioned on observed variables y.

Inference engines of the MCMC family, designed to work in the space of probabilistic execution
traces, constitute the gold standard for obtaining samples from the true posterior of a probabilistic
program [62, 86, 89]. Given a current sequence of latents x in the trace space, these work by making
proposals x′ according to a proposal distribution q(x′|x) and deciding whether to move from x to x′

based on the Metropolis–Hasting acceptance ratio of the form

α = min{1, p(x
′)q(x|x′)

p(x)q(x′|x))} . (2)

Inference engines in the IS family use a weighted set of samples {(wk,xk)Kk=1} to construct an
empirical approximation of the posterior distribution: p̂(x|y) =

∑K
k=1 w

kδ(xk − x)/
∑K
j=1 w

j ,
where δ is the Dirac delta function. The importance weight for each execution trace is

wk =

N∏

n=1

gn(yn|xk1:τk(n))
Tk∏

t=1

fat(x
k
t |xk1:t−1)

qat,it(x
k
t |xk1:t−1)

, (3)

where qat,it(·|xk1:t−1) is known as the proposal distribution and may be identical to the prior fat (as
in regular IS). In the IC technique, we train a recurrent NN to receive the observed values y and
return a set of adapted proposals qat,it(xt|x1:t−1,y) such that the approximate posterior q(x|y) is
close to the true posterior p(x|y). This is achieved by using a Kullback–Leibler divergence training
objective Ep(y) [DKL (p(x|y) || q(x|y;φ))] as

L(φ) :=
∫

y

p(y)

∫

x

p(x|y) log p(x|y)
q(x|y;φ) dx dy = Ep(x,y) [− log q(x|y;φ)] + const. , (4)

where φ represents the NN weights. The weights φ are optimized to minimize this objective by
continually drawing training pairs (x,y) ∼ p(x,y) from the probabilistic program (the simulator).
In IC training, we may designate a subset of all addresses (at, it) to be “controlled” (learned) by the
NN, leaving all remaining addresses to use the prior fat as proposal during inference. Expressed in
simple terms, taking an observation y (an observed event that we would like to recreate or explain
with the simulator) as input, the NN learns to control the random number draws of latents x during
the simulator’s execution in such a way that makes the observed outcome likely (Figure 1, right).

The NN architecture in IC is based on a stacked LSTM [51] recurrent core that gets executed for
as many time steps as the probabilistic trace length. The input to this LSTM in each time step is
a concatenation of embeddings of the observation fobs(y), the current address faddr(at, it), and
the previously sampled value f smp

at−1,it−1
(xt−1). fobs is a NN specific to the domain (such as a 3D

convolutional NN for volumetric inputs), f smp are feed-forward modules, and faddr are learned
address embeddings optimized via backpropagation for each (at, it) pair encountered in the program
execution. The addressing scheme at is the main link between semantic locations in the probabilistic
program [89] and the inputs to the NN. The address of each sample or observe statement is supplied
over the execution protocol (Section 4.2) at runtime by the process hosting and executing the model.
The joint proposal distribution of the NN q(x|y) is factorized into proposals in each time step qat,it ,
whose type depends on the type of the prior fat . In our experiments in this paper (Section 5) the
simulator uses categorical and continuous uniform priors, for which IC uses, respectively, categorical
and mixture of truncated Gaussian distributions as proposals parameterized by the NN. The creation
of IC NNs is automatic, i.e., an open-ended number of NN modules are generated by the PPL
on-the-fly when a simulator address at is encountered for the first time during training [63]. These
modules are reused (either for inference or undergoing further training) when the same address is
encountered in the lifetime of the same trained NN.

A common challenge for inference in real-world scientific models, such as those in particle physics,
is the presence of large dynamic ranges of prior probabilities for various outcomes. For instance,
some particle decays are ∼104 times more probable than others (Figure 8, appendix), and the prior
distribution for a particle momentum can be steeply falling. Therefore some cases may be much
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more likely to be seen by the NN during training relative to others. For this reason, the proposal
parameters and the quality of the inference would vary significantly according to the frequency of the
observations in the prior. To address this issue, we apply a “prior inflation” scheme to automatically
adjust the measure of the prior distribution during training to generate more instances of these unlikely
outcomes. This applies only to the training data generation for the IC NN, and the unmodified original
model prior is used during inference, ensuring that the importance weights (Eq. 3) and therefore the
empirical posterior are correct under the original model.

4.2 A Cross-Platform Probabilistic Execution Protocol

To couple our PPL and inference engines with simulators in a language-agnostic way, we introduce
a probabilistic programming execution protocol (PPX)7 that defines a schema for the execution of
probabilistic programs. The protocol covers language-agnostic definitions of common probability
distributions and message pairs covering the call and return values of (1) program entry points (2)
sample statements, and (3) observe statements (Figure 1, left). The implementation is based on
flatbuffers,8 which is an efficient cross-platform serialization library through which we compile the
protocol into the officially supported languages C++, C#, Go, Java, JavaScript, PHP, Python, and
TypeScript, enabling very lightweight PPL front ends in these languages—in the sense of requiring
only an implementation to call sample and observe statements over the protocol. We exchange these
flatbuffers-encoded messages over ZeroMQ9 [50] sockets, which allow seamless communication
between separate processes in the same machine (using inter-process sockets) or across a network
(using TCP).

Connecting any stochastic simulator in a supported language involves only the redirection of calls to
the random number generator (RNG) to call the sample method of PPX using the corresponding
probability distribution as the argument, which is facilitated when a simulator-wide RNG interface is
defined in a single code file as is the case in SHERPA (Section 4.3). Conditioning is achieved by
either providing an observed value for any sample at inference time (which means that the sample
will be fixed to the observed value) or adding manual observe statements, similar to Pyro [20].

Besides its use with our Python PPL, the protocol defines a very flexible way of coupling any PPL
system to any model so that these two sides can be (1) implemented in different programming
languages and (2) executed in separate processes and on separate machines across networks. Thus we
present this protocol as a probabilistic programming analogue to the Open Neural Network Exchange
(ONNX)10 project for interoperability between deep learning frameworks, in the sense that PPX is
an interoperability project between PPLs allowing language-agnostic exchange of existing models
(simulators). Note that, more than a serialization format, the protocol enables runtime execution of
probabilistic models under the control of inference engines in different PPLs. We are releasing this
protocol as a separately maintained project, together with the rest of our work in Python and C++.

4.3 Controlling SHERPA’s Simulation of Fundamental Particle Physics

We demonstrate our framework with SHERPA [42], a Monte Carlo event generator of high-energy
reactions of particles, which is a state-of-the-art simulator of the Standard Model developed by the
particle physics community. SHERPA, like many other large-scale scientific projects, is implemented
in C++, and therefore we implement a C++ front end for our protocol.11 We couple SHERPA to the
front end by a system-wide rerouting of the calls to the RNG, which is made easy by the existence
of a third-party RNG interface (External_RNG) already present in SHERPA. Through this setup,
we can repurpose, with little effort, any stochastic simulation written in SHERPA as a probabilistic
generative model in which we can perform inference.

Random number draws in C++ simulators are commonly performed at a lower level than the actual
prior distribution that is being simulated. This applies to SHERPA where the only samples are from
the standard uniform distribution U(0, 1), which subsequently get used for different purposes using
transformations or rejection sampling. In our experiments (Section 5) we work with all uniform
samples except for a problem-specific single address that we know to be responsible for sampling
from a categorical distribution representing particle decay channels. The modification of this address

7 https://github.com/pyprob/ppx 8 http://google.github.io/flatbuffers/
9 http://zeromq.org/ 10 https://onnx.ai/ 11 https://github.com/pyprob/pyprob_cpp
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Figure 2: Top histograms: RMH and IC posterior results where a Channel 2 decay event (τ → ντπ
−)

is the mode of the posterior distribution. Note that the eight variables shown are just a subset of the
full latent state of several thousand addresses (Figure 5, appendix). Vertical lines indicate the point
sample of the single GT trace supplying the calorimeter observation in each row. Bottom plots: trace
joint log-probability, Gelman–Rubin diagnostic, autocorrelation results belonging to the posterior in
the first row.

to use the proper categorical prior allows an effortless application of prior inflation (Section 4.1) to
generate training data equally representing each channel.

Rejection sampling [41] sections in the simulator pose a challenge for our approach, as they define
execution traces that are a priori unbounded; and since the IC NN has to backpropagate through
every sampled value, this makes the training significantly slower. Rejection sampling is key to the
application of Monte Carlo methods for evaluating matrix elements [60] and other stages of event
generation in particle physics; thus an efficient treatment of this construction is primal. We address
this problem by implementing a novel trace evaluation scheme which works by annotating the sample
statements within long-running rejection sampling loops with a boolean flag called replace, which,
when set true, enables a rejection-sampling-specific behavior for the given sample address. The
simplest correct approach is to exclude these replace addresses from IC inference (i.e., proposing
for these from the prior) and treat them as regular raw addresses in MCMC. Other approaches include
amortization schemes where during IC NN training we only consider the last (thus accepted) instance
ilast of any address (at, it) that fall within a rejection sampling loop. The results presented in this
paper use the former simple mode. Efficient handling of rejection sampling in universal PPLs [68],
and nested inference in general [75, 76], constitute an active area of research with several alternative
approaches currently being formulated with varying degrees of complexity and sample efficiency that
are beyond the scope of this paper.

5 Experiments

An important decay of the Higgs boson is to τ leptons, whose subsequent decay products interact
in the detector. This constitutes a rich and realistic case to simulate, and directly connects to an
important line of current research in particle physics. During simulation, SHERPA stochastically
generates a set of particles to which the initial τ lepton will decay—a “decay channel”—and samples
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the momenta of these particles according to a joint density obtained from underlying physical theory.
These particles then interact in the detector leading to observations in the raw sensor data. While
Geant4 is typically used to model the interactions in a detector, for our initial studies we implement a
fast, approximate, stochastic detector simulation for a calorimeter with longitudinal and transverse
segmentation (with 20×35×35 voxels). The detector deposits most of the energy for electrons and π0

into the first layers and charged hadrons (e.g., π±) deeper into the calorimeter with larger fluctuations.

Figure 2 presents posterior distributions of a selected subset of random variables in the simulator for
five different test cases where the mode of the posterior is a channel-2 decay (τ → ντπ

−). Test cases
are generated by sampling an execution trace from the simulator prior, giving us a “ground truth trace”
(GT trace), from which we extract the simulated raw 3D calorimeter as a test observation. We run
our inference engines taking only these calorimeter data as input, giving us posteriors over the entire
latent state of the simulator, conditioned on the observed calorimeter using a physically-motivated
Poisson likelihood. We show RMH (MCMC) and IC inference results, where RMH serves as a
baseline as it samples from the true posterior of the model, albeit at great computational cost. For
each case, we establish the convergence of the RMH posterior to the true posterior by computing
the Gelman–Rubin (GR) convergence diagnostic [26, 88] between two MCMC chains conditioned
on the same observation, one starting from the GT trace and one starting from a random trace
sampled from the prior.12 As an example, in Figure 2 (bottom) we show the joint log-probability, GR
diagnostic, and autocorrelation plots of the RMH posterior (with 7.7M traces) belonging to the test
case in the first row. The GR result indicates that the chains converged around 106 iterations, and the
autocorrelation result indicates that we need approximately 105 iterations to accumulate each new
effectively independent sample from the true posterior. These RMH baseline results incur significant
computational cost due to the sequential nature of the sampling and the large number of iterations one
needs to accumulate statistically independent samples. The example we presented took 115 compute
hours on an Intel E5-2695 v2 @ 2.40GHz CPU node.

We present IC posteriors conditioned on the same observations in Figure 2 and plot these together
with corresponding RMH baselines, showing good agreement in all cases. These IC posteriors were
obtained in less than 30 minutes in each case, representing a significant speedup compared with
the RMH baseline. This is due to three main strengths of IC inference: (1) each trace executed by
the IC engine gives us a statistically independent sample from the learned proposal approximating
the true posterior (Equation 4) (cf. the autocorrelation time of 105 in RMH); following from this
independence, (2) IC inference does not necessitate a burn-in period (cf. 106 iterations to convergence
in GR for RMH); and (3) IC inference is embarrassingly parallelizable. These features represent
the main motivation to incorporate IC in our framework to make inference in large-scale simulators
computationally efficient and practicable. The results presented were obtained by running IC inference
in parallel on 20 compute nodes of the type used for RMH inference, using a NN with 143,485,048
parameters that has been trained for 40 epochs with a training set of 3M traces sampled from the
simulator prior, lasting two days on 32 CPU nodes. This time cost for NN training needs to be
incurred only once for any given simulator setup, resulting in a trained inference NN that enables
fast, repeated inference in the model specified by the simulator—a concept referred to as “amortized
inference”. Details of the 3DCNN–LSTM architecture used are in Figure 9 (appendix).

In the last test case in Figure 2 we show posteriors corresponding to a calorimeter observation of
a Channel 22 event (τ → ντK

−K−K+), a type of decay producing calorimeter depositions with
similarity to Channel 2 decays and with extremely low probability in the prior (Figure 8, appendix),
therefore representing a difficult case to infer. We see the posterior uncertainty in the true (RMH)
posterior of this case, where Channel 2 is the mode of the posterior with a small probability mass
on Channel 22 among other channels. We see that the IC posterior is able to reproduce this small
probability mass on Channel 22 with success, thanks to the “prior inflation” scheme with which we
train IC NNs. This leads to a proposal where Channel 22 is the mode, which later gets adjusted by
importance weighting (Equation 3) to match the true posterior result (Figure 7, appendix). Our results
demonstrate the feasibility of Bayesian inference in the whole latent space of this existing simulator
defining a potentially unbounded number of addresses, of which we encountered approximately 24k
during our experiments (Table 1 also Figure 5, appendix). To our knowledge, this is the first time a
PPL system has been used with a model expressed by an existing state-of-the-art simulator at this
scale.

12 The GR diagnostic compares estimated between-chains and within-chain variances, summarized as the R̂
metric which approaches unity as the chains converge on the target distribution.
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6 Conclusions

We presented the first step in subsuming the vast existing body of scientific simulators, which are
causal, generative models that often reflect the most accurate understanding in their respective fields,
into a universal probabilistic programming framework. The ability to scale probabilistic inference to
large-scale simulators is of fundamental importance to the field of probabilistic programming and
the wider modeling community. It is a hard problem that requires innovations in many areas such as
model–PPL interface, handling of priors with long tails, amortization of rejection sampling routines
[68], addressing schemes, IC network architectures, and distributed training and inference [19] which
make it difficult to cover in depth in a single paper.

Our work allows one to use existing simulator code bases to perform model-based machine learning
with interpretability, where the simulator is no longer used as a black box to generate synthetic
training data, but as a highly structured generative model that the simulator’s code already specifies.
Bayesian inference in this setting gives results that are highly interpretable, where we get to see the
exact locations and processes in the model that are associated with each prediction and the uncertainty
in each prediction. With this novel framework providing a clearly defined interface between domain-
specific simulators and probabilistic machine learning techniques, we expect to enable a wide range
of applied work straddling machine learning and fields of science and engineering. In the particle
physics setting, our ultimate aim is to run the inference stage of this approach on collision data from
real detectors by implementing a full LHC physics analysis together with the full posterior, so that
it can be exploited for discovery of new physics via simulations that contain processes beyond the
current Standard Model.
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I. Hřivnáčová, S. Hwang, S. Incerti, A. Ivanchenko, V. Ivanchenko, F. Jones, S. Jun, P. Kai-
taniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lech-
ner, S. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Mu-
rakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrović, M. Pia, W. Pokorski, J. Quesada,
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(c) Latent probabilistic structure of the 100 most frequent traces types.
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(d) Latent probabilistic structure of the 250 most frequent traces types.

Figure 3: Interpretability of the latent structure of the τ lepton decay process, automatically extracted
from SHERPA executions via the probabilistic execution protocol. Showing model structure with
increasing detail by taking an increasing number of most common trace types into account. Node
labels denote address IDs (A1, A2, etc.) that correspond to uniquely identifiable parts of model
execution such as those in Table 1. Addresses A1, A2, A3 correspond to momenta px, py , pz , and A6
corresponds to the decay channel. Edge labels denote the frequency an edge is taken, normalized
per source node. Red: controlled; green: rejection sampling; blue: observed; yellow: uncontrolled.
Note: the addresses in these graphs are “aggregated”, meaning that we collapse all instances it of
addresses (at, it) into the same node in the graph, i.e., representing loops in the execution as cycles in
the graph, in order to simplify the presentation. This gives us ≤60 aggregated addresses representing
the transitions between a total of approximately 24k addresses (at, it) in the simulator.
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(a) Prior execution p(x,y).
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(b) Posterior execution p(x|y) conditioned on a given calorimeter observation y.

Figure 4: Interpretability of the latent probabilistic structure of the τ lepton decay simulator code,
automatically extracted from 10,000 SHERPA executions via the probabilistic execution protocol.
The flow is probabilistic at the shown nodes and deterministic along the edges. Edge labels denote the
frequency an edge is taken, normalized per source node. Red: controlled; green: rejection sampling;
blue: observed; yellow: uncontrolled. Note: the addresses in these graphs are “aggregated”, meaning
that we collapse all instances it of addresses (at, it) into the same node in the graph, i.e., representing
loops in the execution as cycles in the graph, in order to simplify the presentation. This gives us ≤60
aggregated addresses representing the transitions between a total of approximately 24k addresses
(at, it) in the simulator.
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Figure 5: Example posterior over the entire latent state of the SHERPA simulator, conditioned on a
single observed calorimeter. For the observation used, the posteriors presented in this figure contain
approximately 6k addresses out of a total of approximately 24k addresses in the whole simulator. The
histograms shown in Figure 2 are only a subset of this collection. Note: presenting this many plots in
a single figure is challenging and a better plotting code is pending.
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Figure 6: Steps of constructing the IC posterior for a Channel 2 GT event (τ → ντπ
−, first test case

in Figure 2). The IC proposal (top row) is produced by the trained inference network. It is then
weighted using Equation 3, giving IC posterior (middle row). The corresponding true posterior from
RMH (MCMC) baseline is given below (bottom row). Note that the shown variables are just a subset
of the full latent variables available in each case.
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Figure 7: Steps of constructing the IC posterior for a Channel 22 GT event (τ → ντK
−K−K+, last

test case in Figure 2). The IC proposal (top row) is produced by the trained inference network. It is
then weighted using Equation 3, giving IC posterior (middle row). The corresponding true posterior
from RMH (MCMC) baseline is given below (bottom row). Note that the shown variables are just a
subset of the full latent variables available in each case. The effect of “prior inflation” can be seen
in the proposal mode of Channel 22 which the NN proposes as the most likely (i.e., mode of the
proposal). However after importance weighting the IC posterior matches the true posterior from
RMH (MCMC) where Channel 22 has very low (but non-zero) posterior probability due to the prior
model.
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that these can produce multiple detected particles.
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Figure 9: Training and validation losses of the IC inference NNs used for the results presented in
Section 5. The network has 143,485,048 parameters and has been trained for 40 epochs. Network
configuration: an LSTM with 512 hidden units; an observation embedding of size 256, encoded with
a 3D convolutional NN (CNN) [64] with layer configuration Conv3D(1, 64, 3)–Conv3D(64, 64, 3)–
MaxPool3D(2)–Conv3D(64, 128, 3)–Conv3D(128, 128, 3)–Conv3D(128, 128, 3)– MaxPool3D(2)–
FC(2048, 256). We use previous sample embeddings of size 4 given by single-layer NNs, and address
embeddings of size 64. The proposal layers are two-layer NNs, the output of which are either a
mixture of ten truncated normal distributions [21] (for uniform continuous priors) or a categorical
distribution (for categorical priors). We use ReLU nonlinearities in all NN components.
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Table 1: Examples of addresses in the τ lepton decay problem in SHERPA (C++). Only the first 6
addresses are shown out of a total of 24,382 addresses encountered over 1,602,880 executions to
collect statistics.
Address ID Full address

A1 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x45f; ATOOLS:: Random:: Get(bool, bool)+0x1d5; probprog_RNG:: Get(bool,
bool)+0xf9]_Uniform_1

A2 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x477; ATOOLS:: Random:: Get(bool, bool)+0x1d5; probprog_RNG:: Get(bool,
bool)+0xf9]_Uniform_1

A3 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x48f; ATOOLS:: Random:: Get(bool, bool)+0x1d5; probprog_RNG:: Get(bool,
bool)+0xf9]_Uniform_1

A4 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x8f4; ATOOLS:: Particle:: SetTime()+0xd; ATOOLS:: Flavour:: GenerateLifeTime()
const+0x35; ATOOLS:: Random:: Get()+0x18b; probprog_RNG:: Get()+0xde]_Uniform_1

A5 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x982; SHERPA:: Event_Handler:: IterateEventPhases(SHERPA:: eventtype:: code&,
double&)+0x1d2; SHERPA:: Hadron_Decays:: Treat(ATOOLS:: Blob_List*, double&)+0x975;
SHERPA:: Decay_Handler_Base:: TreatInitialBlob(ATOOLS:: Blob*, METOOLS:: Ampli-
tude2_Tensor*, std:: vector<ATOOLS:: Particle*, std:: allocator<ATOOLS:: Particle*> >
const&)+0x1ab1; SHERPA:: Hadron_Decay_Handler:: CreateDecayBlob(ATOOLS:: Parti-
cle*)+0x4cd; PHASIC:: Decay_Table:: Select() const+0x76e; ATOOLS:: Random:: Get(bool,
bool)+0x1d5; probprog_RNG:: Get(bool, bool)+0xf9]_Uniform_1

A6 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gen-
erateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: event-
type:: code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: event-
type:: code&)+0x982; SHERPA:: Event_Handler:: IterateEventPhases(SHERPA:: eventtype::
code&, double&)+0x1d2; SHERPA:: Hadron_Decays:: Treat(ATOOLS:: Blob_List*, dou-
ble&)+0x975; SHERPA:: Decay_Handler_Base:: TreatInitialBlob(ATOOLS:: Blob*, METOOLS::
Amplitude2_Tensor*, std:: vector<ATOOLS:: Particle*, std:: allocator<ATOOLS:: Parti-
cle*> > const&)+0x1ab1; SHERPA:: Hadron_Decay_Handler:: CreateDecayBlob(ATOOLS::
Particle*)+0x4cd; PHASIC:: Decay_Table:: Select() const+0x9d7; ATOOLS:: Random::
GetCategorical(std:: vector<double, std:: allocator<double> > const&, bool, bool)+0x1a5;
probprog_RNG:: GetCategorical(std:: vector<double, std:: allocator<double> > const&, bool,
bool)+0x111]_Categorical(length_categories:38)_1
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ABSTRACT
Probabilistic programming languages (PPLs) are receiving wide-
spread attention for performing Bayesian inference in complex
generative models. However, applications to science remain limited
because of the impracticability of rewriting complex scientific simu-
lators in a PPL, the computational cost of inference, and the lack of
scalable implementations. To address these, we present a novel PPL
framework that couples directly to existing scientific simulators
through a cross-platform probabilistic execution protocol and pro-
vides Markov chain Monte Carlo (MCMC) and deep-learning-based
inference compilation (IC) engines for tractable inference. To guide
IC inference, we perform distributed training of a dynamic 3DCNN–
LSTM architecture with a PyTorch-MPI-based framework on 1,024
32-core CPU nodes of the Cori supercomputer with a global mini-
batch size of 128k: achieving a performance of 450 Tflop/s through
enhancements to PyTorch. We demonstrate a Large Hadron Col-
lider (LHC) use-case with the C++ Sherpa simulator and achieve
the largest-scale posterior inference in a Turing-complete PPL.
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1 INTRODUCTION
Probabilistic programming [71] is an emerging paradigmwithin ma-
chine learning that uses general-purpose programming languages
to express probabilistic models. This is achieved by introducing
statistical conditioning as a language construct so that inverse prob-
lems can be expressed. Probabilistic programming languages (PPLs)
have semantics [67] that can be understood as Bayesian inference
[13, 24, 26]. The major challenge in designing useful PPL systems
is that language evaluators must solve arbitrary, user-provided in-
verse problems, which usually requires general-purpose inference
algorithms that are computationally expensive.

In this paper we report our work that enables, for the first time,
the use of existing stochastic simulator code as a probabilistic pro-
gram in which one can do fast, repeated (amortized) Bayesian infer-
ence; this enables one to predict the distribution of input parameters
and all random choices in the simulator from an observation of its
output. In other words, given a simulator of a generative process in
the forward direction (inputs→outputs), our technique can provide
the reverse (outputs→inputs) by predicting the whole latent state
of the simulator that could have given rise to an observed instance
of its output. For example, using a particle physics simulation we
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can get distributions over the particle properties and decays within
the simulator that can give rise to a collision event observed in a
detector, or, using a spectroscopy simulator we can determine the
elemental matter composition and dispersions within the simulator
explaining an observed spectrum. In fields where accurate simu-
lators of real-world phenomena exist, our technique enables the
interpretable explanation of real observations under the structured
model defined by the simulator code base.

We achieve this by defining a probabilistic programming execu-
tion protocol that interfaces with existing simulators at the sites of
random number draws, without altering the simulator’s structure
and execution in the host system. The random number draws are
routed through the protocol to a PPL system which treats these
as samples from corresponding prior distributions in a Bayesian
setting, giving one the capability to record or guide the execution
of the simulator to perform inference. Thus we generalize existing
simulators as probabilistic programs and make them subject to
inference under general-purpose inference engines.

Inference in the probabilistic programming setting is performed
by sampling in the space of execution traces, where a single sample
(an execution trace) represents a full run of the simulator. Each
execution trace itself is composed of a potentially unbounded se-
quence of addresses, prior distributions, and sampled values, where
an address is a unique label identifying each random number draw.
In other words, we work with empirical distributions over simu-
lator executions, which entails unique requirements on memory,
storage, and computation that we address in our implementation.
The addresses comprising each trace give our technique the unique
ability to provide direct connections to the simulator code base
for any predictions at test time, where the simulator is no longer
used as a black box but as a highly structured and interpretable
probabilistic generative model that it implicitly represents.

Our PPL provides inference engines from the Markov chain
Monte Carlo (MCMC) and importance sampling (IS) families.MCMC
inference guarantees closely approximating the true posterior of
the simulator, albeit with significant computational cost due to its
sequential nature and the large number of iterations one needs to
accumulate statistically independent samples. Inference compila-
tion (IC) [47] addresses this by training a dynamic neural network
to provide proposals for IS, leading to fast amortized inference.

We name this project “Etalumis”, the word “simulate” spelled
backwards, as a reference to the fact that our technique essentially
inverts a simulator by probabilistically inferring all choices in the
simulator given an observation of its output. We demonstrate this
by inferring properties of particles produced at the Large Hadron
Collider (LHC) using the Sherpa1 [29] simulator.

1.1 Contributions
Our main contributions are:
• A novel PPL framework that enables execution of existing sto-
chastic simulators under the control of general-purpose inference
engines, with HPC features including handling multi-TB data
and distributed training and inference.
• The largest scale posterior inference in a Turing-complete PPL,
where our experiments encountered approximately 25,000 latent

1https://gitlab.com/sherpa-team/sherpa

variables2 expressed by the existing Sherpa simulator code base
of nearly one million lines of code in C++ [29].
• Synchronous data parallel training of a dynamic 3DCNN–LSTM
neural network (NN) architecture using the PyTorch [61] MPI
framework at the scale of 1,024 nodes (32,768 CPU cores) with
a global minibatch size of 128k. To our knowledge this is the
largest scale use of PyTorch’s builtin MPI functionality,3 and the
largest minibatch size used for this form of NN model.

2 PROBABILISTIC PROGRAMMING FOR
PARTICLE PHYSICS

Particle physics seeks to understand particles produced in collisions
at accelerators such at the LHC at CERN. Collisions happen millions
of times per second, creating cascading particle decays, observed in
complex instruments such as the ATLAS detector [2], comprising
millions of electronics channels. These experiments analyze the vast
volume of resulting data and seek to reconstruct the initial particles
produced in order to make discoveries including physics beyond
the current Standard Model of particle physics [28][73][63][72].

The Standard Model has a number of parameters (e.g., particle
masses), which we can denote θ , describing the way particles and
fundamental forces act in the universe. In a given collision at the
LHC, with initial conditions denoted E, we observe a cascade of
particles interact with particle detectors. If we denote all of the
random “choices” made by nature as x, the Standard Model de-
scribes, generatively, the conditional probability p(x|E,θ ), that is,
the distribution of all choices x as a function of initial conditions E
and model parameters θ . Note that, while the Standard Model can
be expressed symbolically in mathematical notation [32, 62], it can
also be expressed computationally as a stochastic simulator [29],
which, given access to a random number generator, can draw sam-
ples from p(x).4 Similarly, a particle detector can be modeled as a
stochastic simulator, generating samples from p(y|x), the likelihood
of observation y as a function of x.

In this paper we focus on a real use-case in particle physics,
performing experiments on the decay of the τ (tau) lepton. This is
under active investigation by LHC physicists [4] and important to
uncovering properties of the Higgs boson. We use the state-of-the-
art Sherpa simulator [29] for modeling τ particle creation in LHC
collisions and their subsequent decay into further particles (the
stochastic events x above), coupled to a fast 3D detector simulator
for the detector observation y.

Current methods in the field include performing classification
and regression using machine learning approaches on low dimen-
sional distributions of derived variables [4] that provide point-
estimates without the posterior of the full latent state nor the deep
interpretability of our approach. Inference of the latent structure
has only previously been used in the field with drastically simplified
models of the process and detector [43] [3].

PPLs allow us to express inference problems such as: given an
actual particle detector observation y, what sequence of choices x
are likely to have led to this observation? In other words, we would
2Note that the simulator defines an unlimited number of random variables because of
the presence of rejection sampling loops.
3Personal communication with PyTorch developers.
4Dropping the dependence on E and θ because everything in this example is condi-
tionally dependent on these quantities.
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like to find p(x|y), the distribution of x as a function of y. To solve
this inverse problem via conditioning requires invoking Bayes rule

p(x|y) = p(y, x)
p(y) =

p(y|x)p(x)∫
p(y|x)p(x)dx

where the posterior distribution of interest, p(x|y), is related to the
composition of the two stochastic simulators in the form of the
joint distributionp(y, x) = p(y|x)p(x) renormalized by the marginal
probability, or evidence of the data, p(y) =

∫
p(y|x)p(x)dx. Com-

puting the evidence requires summing over all possible paths that
the simulation can take. This is a large number of possible paths;
in most models this is a quantity that is impossible to compute
in polynomial time. In practice PPLs approximate the posterior
p(x|y) using sampling-based inference engines that sidestep the
integration problem but remain computationally intensive. This
specifically is where probabilistic programming meets, for the first
time in this paper, high-performance computing.

3 STATE OF THE ART
3.1 Probabilistic programming
Within probabilistic programming, recent advances in computa-
tional hardware have made it possible to distribute certain types of
inference processes, enabling inference to be applied to problems of
real-world relevance [70]. By parallelizing computation over several
cores, PPLs have been able to perform large-scale inference on mod-
els with increasing numbers of observations, such as the cause and
effect analysis of 1.6 × 109 genetic measurements [30, 70], spatial
analysis of 1.5 × 104 shots from 308 NBA players [18], exploratory
analysis of 1.7 × 106 taxi trajectories [36], and probabilistic model-
ing for processing hundreds-of-thousands of Xbox live games per
day to rank and match players fairly [33, 55].

In all these large-scale programs, despite the number of obser-
vations being large, model sizes in terms of the number of latent
variables have been limited [36]. In contrast, to perform inference in
a complex scientific model such as the Standard Model encoded by
Sherpa requires handling thousands of latent variables, all of which
need to be controlled within the program to perform inference in
a scalable manner. To our knowledge, no existing PPL system has
been used to run inference at the scale we are reporting in this
work, and instances of distributed inference in existing literature
have been typically restricted to small clusters [19].

A key feature of PPLs is that they decouple model specification
from inference. Amodel is implemented by the user as a stand-alone
regular program in the host programming language, specifying a
generative process that produces samples from the joint prior dis-
tribution p(y, x) = p(y|x)p(x) in each execution, that is, a forward
model going from choices x to outcomes (observations) y. The same
program can then be executed using a variety of general-purpose
inference engines available in the PPL system to obtain p(x|y), the
inverse going from observations y to choices x. Inference engines
available in PPLs range from MCMC-based lightweight Metropolis
Hastings (LMH) [74] and random-walk Metropolis Hastings (RMH)
[46] algorithms to importance sampling (IS) [8] and sequential
Monte Carlo [22]. Modern PPLs such as Pyro [11] and TensorFlow
Probability [19, 70] use gradient-based inference engines including
variational inference [36, 42] and Hamiltonian Monte Carlo [37, 57]

that benefit from modern deep learning hardware and automatic
differentiation [9] features provided by PyTorch [61] and Tensor-
Flow [5] libraries. Another way of making use of gradient-based
optimization is to combine IS with deep-learning-based proposals
trained with data sampled from the probabilistic program, resulting
in the IC algorithm [47, 49] in an amortized inference setting [25].

3.2 Distributed training for deep learning
To perform IC inference in Turing-complete PPLs in general, we
would like to support the training of dynamic NNs whose runtime
structure changes in each execution of the probabilistic model by re-
arranging NNmodules corresponding to different addresses (unique
random number draws) encountered [47] (Section 4.3). Moreover,
depending on probabilistic model complexity, the NNs may grow
in size if trained in an online setting, as a model can represent a
potentially unbounded number of random number draws. In addi-
tion to these, the volume of training data required is large, as the
data keeps track of all execution paths within the simulator. To
enable rapid prototyping, model evaluation, and making use of HPC
capacity, scaling deep learning training to multiple computation
units is highly desirable [38, 44, 45, 51, 52].

In this context there are three prominent parallelism strategies:
data- and model-parallelism, and layer pipelining. In this project
we work in a data-parallel setting where different nodes train the
same model on different subsets of data. For such training, there
are synchronous- and asynchronous-update approaches. In syn-
chronous update [16, 59], locally computed gradients are summed
across the nodes at the same time with synchronization barriers
for parameter update. In asynchronous update [17, 58, 77], one
removes the barrier so that nodes can independently contribute to
a parameter server. Although synchronous update can entail chal-
lenges due to straggler effects [15, 69], it has desirable properties
in terms of convergence, reproducibility, and ease of debugging. In
this work, given the novelty of the probabilistic techniques we are
introducing and the need to fully understand and compare trained
NNs without ambiguity, we employ synchronous updates.

In synchronous updates, large global minibatches can make con-
vergence challenging and hinder test accuracy. Keskar et al. [39]
pointed out large-minibatch training can lead to sharp minima and
a generalization gap. Other work [31, 76] argues that the difficulties
in large-minibatch training are optimization related and can be
mitigated with learning rate scaling [31]. You et al. [76] apply layer-
wise adaptive rate scaling (LARS) to achieve large-minibatch-size
training of a Resnet-50 architecture without loss of accuracy, and
Ginsburg et al. [27] use layer-wise adaptive rate control (LARC) to
improve training stability and speed. Smith et al. [65] have proposed
to increase the minibatch size instead of decaying the learning rate,
and more recent work [53, 64] showed relationships between gradi-
ent noise scale (or training steps) and minibatch size. Through such
methods, distributed training has been scaled to many thousands
of CPUs or GPUs [44, 45, 51, 54]. While we take inspiration from
these recent approaches, our dynamic NN architecture and training
data create a distinct training setting which requires appropriate
innovations, as discussed in Section 4.3.
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Figure 1: The probabilistic execution protocol (PPX). Sam-
ple and observe statements correspond to random number
draws and conditioning, respectively.

4 INNOVATIONS
4.1 PPX and pyprob: executing existing

simulators as probabilistic programs
One of our main contributions in Etalumis is the development of a
probabilistic programming execution protocol (PPX), which defines
a cross-platform API for the execution and control of stochastic
simulators5 (Figure 1). The protocol provides language-agnostic
definitions of common probability distributions and message pairs
covering the call and return values of: (1) program entry points;
(2) sample statements for random number draws; and (3) observe
statements for conditioning. The purpose of this protocol is twofold:
• It allows us to record execution traces of a stochastic simulator
as a sequence of sample and observe (conditioning) operations on
random numbers, each associated with an addressAt . We can use
these traces for tasks such as inspecting the probabilistic model
implemented by the simulator, computing likelihoods, learning
surrogate models, and generating training data for IC NNs.
• It allows us to control the execution of the simulator, at infer-
ence time, by making intelligent choices for each random num-
ber draw as the simulator keeps requesting random numbers.
General-purpose PPL inference guides the simulator by making
random number draws not from the prior p(x) but from proposal
distributions q(x|y) that depend on observed data y (Section 2).
PPX is based on flatbuffers,6 a streamlined version of Google pro-

tocol buffers, providing bindings into C++, C#, Go, Java, JavaScript,
PHP, Python, and TypeScript, enabling lightweight PPL front ends
in these languages—in the sense of requiring the implementation
of a simple intermediate layer to perform sample and observe opera-
tions over the protocol. We exchange PPX messages over ZeroMQ7

[34] sockets, which allow communication between separate pro-
cesses in the same machine (via inter-process sockets) or across a
network (via TCP). PPX is inspired by the Open Neural Network
Exchange (ONNX) project8 allowing interoperability between ma-
jor deep learning frameworks, and it allows the execution of any

5https://github.com/probprog/ppx
6http://google.github.io/flatbuffers/
7http://zeromq.org/
8https://onnx.ai/

stochastic simulator under the control of any PPL system, provided
that the necessary bindings are incorporated on both sides.

Using the PPX protocol as the interface, we implement two main
components: (1) pyprob, a PyTorch-based PPL9 in Python and (2)
a C++ binding to the protocol to route the random number draws
in Sherpa to the PPL and therefore allow probabilistic inference in
this simulator. Our PPL is designed to work with models written
in Python and other languages supported through PPX. This is
in contrast to existing PPLs such as Pyro [11] and TensorFlow
Probability [19, 70] which do not provide a way to interface with
existing simulators and require one to implement any model from
scratch in the specific PPL.10 We develop pyprob based on PyTorch
[61], to utilize its automatic differentiation [9] infrastructure with
support for dynamic computation graphs for IC inference.

4.2 Efficient Bayesian inference
Working with existing simulators as probabilistic programs restricts
the class of inference engines that we can put to use. Modern PPLs
commonly use gradient-based inference such as HamiltonianMonte
Carlo [57] and variational inference [36, 42] to approximate pos-
terior distributions. However this is not applicable in our setting
due to the absence of derivatives in general simulator codes. There-
fore in pyprob we focus our attention on two inference engine
families that can control Turing-complete simulators over the PPX
protocol: MCMC in the RMH variety [46, 74], which provides a
high-compute-cost sequential algorithm with statistical guarantees
to closely approximate the posterior, and IS with IC [47], which
does not require derivatives of the simulator code but still benefits
from gradient-based methods by training proposal NNs and using
these to significantly speed up IS inference.

It is important to note that the inference engines in pyprob work
in the space of execution traces of probabilistic programs, such that
a single sample from the inference engine corresponds to a full run
of the simulator. Inference in this setting amounts to making ad-
justments to the random number draws, re-executing the simulator,
and scoring the resulting execution in terms of the likelihood of
the given observation. Depending on the specific observation and
the simulator code involved, inference is computationally very ex-
pensive, requiring up to millions of executions in the RMH engine.
Despite being very costly, RMH provides a way of sampling from
the true posterior [56, 57], which is needed in initial explorations
of any new simulator to establish correct posteriors serving as ref-
erence to confirm that IC inference can work correctly in the given
setting. To establish the correctness of our inference results, we
implement several MCMC convergence diagnostics. Autocorrela-
tion measures the number of iterations one needs to get effectively
independent samples in the same MCMC chain, which allows us
to estimate how long RMH needs to run to reach a target effective
sample size. The Gelman–Rubin metric, given multiple indepen-
dent MCMC chains sampled from the same posterior, compares
the variance of each chain to the pooled variance of all chains to
statistically establish that we converged on the true posterior [24].

RMH comes with a high computational cost. This is because it
requires a large number of initial samples to be generated that are

9https://github.com/probprog/pyprob
10We are planning to provide PPX bindings for these PPLs in future work.
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then discarded, of the order ∼ 106 for the Sherpa model we present
in this paper. This is required to find the posterior density, which,
as the model begins from an arbitrary point of the prior, can be
very far from the starting region. Once this “burn-in” stage is com-
pleted the MCMC chain should be sampling from within the region
containing the posterior. In addition to this, the sequential nature
of each chain limits our ability to parallelize the computation, again
creating computational inefficiencies in the high-dimensional space
of simulator execution traces that we work with in our technique.

In order to provide fast, repeated inference in a distributed set-
ting, we implement the IC algorithm, which trains a deep recurrent
NN to provide proposals for an IS scheme [47]. This works by run-
ning the simulator many times and therefore sampling a large set
of execution traces from the simulator prior p(x, y), and using these
to train a NN that represents q(x|y), i.e., informed proposals for ran-
dom number draws x given observations y, by optimizing the loss
L(ϕ) = Ep(y)

[
DKL(p(x|y)| |qϕ (x|y))

]
= Ep(x,y)

[− logqϕ (x|y)] +
const., where ϕ are NN parameters (Algorithm 1 and Figure 3) [47].
This phase of sampling the training data and training the NN is
costly, but it needs to be performed only once for any given model.
Once the proposal NN is trained to convergence, the IC inference
engine becomes competitive in performance, which allows us to
achieve a given effective sample size in the posterior p(x|y) using a
fraction of the RMH computational cost. IC inference is embarrass-
ingly parallel, where many instances of the same trained NN can
be executed to run distributed inference on a given observation.

To further improve inference performance, we make several low-
level improvements in the code base. The C++ front end of PPX
uses concatenated stack frames of each random number draw as a
unique address identifying a latent variable in the corresponding
PPL model. Stack traces are obtained with the backtrace(3) func-
tion as instruction addresses and then converted to symbolic names
using the dladdr(3) function [50]. The conversion is quite expen-
sive, which prompted us to add a hash map to cache dladdr results,
giving a 5x improvement in the production of address strings that
are essential in our inference engines. The particle detector simula-
tor that we use was initially coded to use the xtensor library11 to
implement the probability density function (PDF) of multivariate
normal distributions in the general case, but was exclusively called
on 3D data. This code was replaced by a scalar-based implemen-
tation limited to the 3D case, resulting in a 13x speed-up in the
PDF, and a 1.5x speed-up of our simulator pipeline in general. The
bulk of our further optimizations focus on the NN training for IC
inference and are discussed in the next sections.

4.3 Dynamic neural network architecture
The NN architecture used in IC inference is based on a LSTM [35] re-
current core that gets executed asmany time steps as the simulator’s
probabilistic trace length (Figure 3). To this core NN, various other
NN components get attached according to the series of addresses
At executed in the simulator. In other words, we construct a dy-
namic NNwhose runtime structure changes in each execution trace,
implemented using the dynamic computation graph infrastructure
in PyTorch. The input to this LSTM in each time step is a concate-
nation of embeddings of the observation, the current address in

11https://xtensor.readthedocs.io
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Figure 2: Loss curves for NN architectures considered in the
hyperparameter search detailed in the text.

the simulator, and the previously sampled value. The observation
embedding is a NN specific to the observation domain. Address
embeddings are learned vectors representing the identity of random
choices At in the simulator address space. Sample embeddings are
address-specific layers encoding the value of the random draw in
the previous time step. The LSTM output, at each time step, is fed
into address-specific proposal layers that provide the final output
of the NN for IC inference: proposal distributions q(x|y) to use for
each addressAt as the simulator keeps running and requesting new
random numbers over the PPX protocol (Section 4.1).

For the Sherpa experiments reported in this paper, we work with
3D observations of size 35x35x20, representing particle detector
voxels. To tune NN architecture hyperparameters, we search a grid
of LSTM stacks in range {1, 4}, LSTM hidden units in the set {128,
256, 512}, and number of proposal mixture components in the set
{5, 10, 25, 50} (Figure 2). We settle on the following architecture: an
LSTM with 512 hidden units; an observation embedding of size 256,
encoded with a 3D convolutional neural network (CNN) [48] acting
as a feature extractor, with layer configuration Conv3D(1, 64, 3)–
Conv3D(64, 64, 3)–MaxPool3D(2)–Conv3D(64, 128, 3)–Conv3D(128,
128, 3)–Conv3D(128, 128, 3)– MaxPool3D(2)–FC(2048, 256); previ-
ous sample embeddings of size 4 given by single-layer NNs; and ad-
dress embeddings of size 64. The proposal layers are two-layer NNs,
the output of which are either a mixture of ten truncated normal
distributions [12] (for uniform continuous priors) or a categorical
distribution (for categorical priors). We use ReLU nonlinearities in
all NN components. All of these NN components except the LSTM
and the 3DCNN are dependent on addresses At in the simulator,
and these address-specific layers are created at the first encounter
with a random number draw at a given address. Thus the number
of trainable parameters in an IC NN is dependent on the size of the
training data, because the more data gets used, the more likely it
becomes to encounter new addresses in the simulator.

The pyprob framework is capable of operating in an “online”
fashion, where NN training and layer generation happens using
traces sampled by executing the simulator on-the-fly and discarding
traces after each minibatch, or “offline”, where traces are sampled
from the simulator and saved to disk as a dataset for further reuse
(Algorithm 2). In our experiments, we used training datasets of 3M
and 15M traces, resulting in NN sizes of 156,960,440 and 171,732,688
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parameters respectively. All timing and scaling results presented in
Sections 6.1 and 6.2 are performed with the larger network.

4.4 Training of dynamic neural networks
Scalable training of dynamic NNs we introduced in Section 4.3
pose unique challenges. Because of the address-dependent nature
of the embedding and proposal layers of the overall IC NN, differ-
ent nodes/ranks in a distributed training setting will work with
different NN configurations according to the minibatch of training
data they process at any given time. When the same NN is not
shared across all nodes/ranks, it is not possible to rely on a generic
allreduce operation for gradient averaging which is required for
multi-node synchronous SGD. Inspired by neural machine trans-
lation (NMT) [75], in the offline training mode with training data
saved on the disk, we implemented the option of pre-processing the
whole dataset to pre-generate all embedding and proposal layers
that a given dataset would imply to exist. Once layer pre-generation
is done, the collection of all embedding and proposal layers are
shared on each node/rank. In this way, for offline training, we have
a globally shared NN representing the superset of all NN com-
ponents each node needs to handle in any given minibatch, thus
making it possible to scale training of the NN on multiple nodes.

Our allreduce-based training algorithm can also work in the
online training setting, where training data is sampled from the
simulator on-the-fly, if we freeze a globally shared NN and discard
any subsequently encountered traces that contain addresses un-
known at the time of NN architecture freezing. In future work, we
intend to add a distributed open-ended implementation for online
training to allow running without discarding, that will require the
NN instances in each node/rank to grow with newly seen addresses.

Algorithm 1 Computing minibatch loss Ln of NN parameters ϕ
Require: Minibatch Dn
L← number of unique trace types found in Dn
Construct sub-minibatches Dl

n , for l = 1, . . . ,L
Ln ← 0
for l ∈ {1, . . . ,L} do
Ln ← Ln −

∑
(x ,y)∈Dl

n
logqϕ (x |y)

end for
return Ln

Algorithm 2 Distributed training with MPI backend. p(x ,y) is the
simulator and Ĝ(x ,y) is an offline dataset sampled from p(x ,y)
Require: OnlineData {True/False value}
Require: B {Minibatch size}

Initialize inference network qϕ (x |y)
N ← number of processes
for all n ∈ {1, . . . ,N } do

while Not Stop do
if OnlineData then

Sample Dn = {(x ,y)1, . . . , (x ,y)B } from p(x ,y)
else

Get Dn = {(x ,y)1, . . . , (x ,y)B } from Ĝ(x ,y)
end if
Synchronize parameters (ϕ) across all processes
Ln ← − 1

B
∑
(x ,y)∈Dn logqϕ (x |y)

Calculate ∇ϕLn
Call all_reduce s.t. ∇ϕL ← 1

N
∑N
n=1 ∇ϕLn

Update ϕ using ∇ϕL with e.g. ADAM, SGD, LARC, etc.
end while

end for

4.4.1 Single node improvements to Etalumis. We profiled the Etalu-
mis architecture with vtune, Cprofiler, and PyTorch autograd pro-
filer, identifying data loading and 3D convolution as the primary
computational hot-spots on which we focused our optimization
efforts. We provide details on data loading and 3D convolution in
the subsequent sections. In addition to these, execution traces from
the Sherpa simulator have many different trace types (a unique
sequence of addresses At , with different sampled values) with dif-
ferent rates of occurrence: in a given dataset, some trace types
can be encountered thousands of times while others are seen only
once. This is problematic because at training time we further divide
each minibatch into “sub-minibatches” based on trace type, where
each sub-minibatch can be processed by the NN in a single forward
execution due to all traces being of the same type, i.e., sharing the
same sequence of addressesAt and therefore requiring the same NN
structure (Algorithm 1). Therefore minibatches containing more
than one trace type do not allow for effective parallelization and vec-
torization. In other words, unlike conventional NNs, the effective
minibatch size is determined by the average size of sub-minibatches,
and the more trace types we have within a minibatch, the slower
the computation. To address this, we explored multiple methods
to enlarge effective minibatch size, such as sorting traces, multi-
bucketing, and selectively batching traces from the same trace type
together in each minibatch. These options and their trade offs are
described in more detail in Section 7.
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4.4.2 Single node improvements to PyTorch. The flexibility of dy-
namic computation graphs and competitive speed of PyTorch have
been crucial for this project. Optimizations were performed on
code belonging to Pytorch stable release v1.0.0 to better support
this project on Intel® Xeon® CPU platforms, focused in particular
on 3D convolution operations making use of the MKL-DNN open
source math library. MKL-DNN uses a direct convolution algorithm
and for a 5-dimensional input tensor with layout {N, C, D, H, W},
it is reordered into a layout of {N, C, D, H, W, 8c} which is more
amenable for SIMD vectorization.12 The 3D convolution operator is
vectorized on the innermost dimension which matches the 256-bit
instruction length on AVX2, and parallelized on the outer dimen-
sions. We also performed cache optimization to further improve
performance. With these improvements we found the heavily used
3D convolution kernel achieved an 8x improvement on the Cori
HSW platform.13 The overall improvement on single node training
time is given in Section 6.1. These improvements are made available
in a fork of the official PyTorch repository.14

4.4.3 I/O optimization. I/O is challenging in many deep learning
workloads partly due to random access patterns, such as those in-
duced by shuffling, disturbing any pre-determined access order. In
order to reduce the number of random access I/O operations, we
developed a parallel trace sorting algorithm and pre-sorted the 15M
traces according to trace type (Section 4.4.1). We further grouped
the small trace files into larger files, going from 750 files with 20k
traces per file to 150 files with 100k traces per file. With this group-
ing and sorting, we ensured that I/O requests follow a sequential
access onto a contiguous file region which further improved the I/O
performance. Metadata operations are also costly, so we enhanced
the Python shelve module’s file open/close performance with a
caching mechanism, which allows concurrent access from different
ranks to the same file.

Specific to our PPL setting, training data consists of execution
traces that have a complex hierarchy, with each trace file containing
many trace objects that consist of variable sequences of sample
objects representing random number draws, which further con-
tain variable length tensors, strings, integers, booleans, and other
generic Python objects. PyTorch serialization with pickle is used
to handle the complex trace data structure, but the pickle and un-
pickle overhead are very high. We developed a “pruning” function
to shrink the data by removing non-necessary structures. We also
designed a dictionary of simulator addressesAt , which accumulates
the fairly long address strings and assigns shorthand IDs that are
used in serialization. This brought a 40% memory consumption
reduction as well as large disk space saving.

For distributed training, we developed distributed minibatch
sampler and dataset classes conforming to the PyTorch training
API. The sampler first splits the sorted trace indices into minibatch-
sized chunks, so that all traces in each minibatch are highly likely
to be of the same type, then optionally groups these chunks into
several buckets (Section 7.2). Within each bucket, the chunks are
assigned with a round-robin algorithm to different ranks, such

12https://intel.github.io/mkl-dnn/understanding_memory_formats.html
13https://docs.nersc.gov/analytics/machinelearning/benchmarks/
14Intel-optimized PyTorch: https://github.com/intel/pytorch

that each rank has roughly same distribution of workload. The
distributed sampler enables us to scale the training at 1,024 nodes.

The sorting of traces and their grouping into minibatch chunks
significantly improves the training speed (up to 50× in our ex-
periments) by enabling all traces in a minibatch to be propagated
through the NN in the same forward execution, in other words,
decreasing the need for “sub-minibatching” (Section 4.4.1). This
sorting and chunking scheme generates minibatches that predomi-
nantly contain a single trace type. However, the minibatches used
at each iteration are sampled randomly without replacement from
different regions of the sorted training set, and therefore contain
different trace types, resulting in a gradient unbiased in expectation
during any given epoch.

In our initial profiling, the cost of I/O was more than 50% of total
run time. With these data re-structuring and parallel I/O optimiza-
tions, we reduced the I/O to less than 5%, achieving 10x speedup at
different scales.

4.4.4 Distributed improvements to PyTorch MPI CPU code. PyTorch
has a torch.distributed backend,15 which allows scalable distributed
training with high performance on both CPU and GPU clusters. Eta-
lumis uses theMPI backend as appropriate for the synchronous SGD
setting that we implement (Algorithm 2) and the HPC machines we
utilize (Section 5).We havemade various improvements to this back-
end to enable the large-scale distributed training on CPU systems re-
quired for this project. The call torch.distributed.all_reduce
is used to combine the gradient tensors for all distributed MPI ranks.
In Etalumis, the set of non-null gradient tensors differs for each
rank and is a small fraction of the total set of tensors. Therefore we
first perform an allreduce to obtain a map of all the tensors that
are present on all ranks; then we create a list of the tensors, filling
in the ones that are not present on our rank with zero; finally, we
reduce all of the gradient tensors in the list. PyTorch all_reduce
does not take a list of tensors so normally a list comprehension is
used, but this results in one call to MPI_Allreduce for each tensor.
We modified PyTorch all_reduce to accept a list of tensors. Then,
in the PyTorch C++ code for allreduce, we concatenate small ten-
sors into a buffer, call MPI_Allreduce on the buffer, and copy the
results back to the original tensor. This eliminates almost all the
allreduce latency and makes the communication bandwidth-bound.

We found that changing Etalumis to reduce only the non-null
gradients gives a 4x improvement in allreduce time. Tensor con-
catenation improves overall performance by an additional 4% on
one node which increases as nodes are added. With these improve-
ments, the load balance effects discussed in Sections 6.2 and 7.2 are
dominant and so are our primary focus of further distributed opti-
mizations. Other future work could include performing the above
steps for each backward layer with an asynchronous allreduce to
overlap the communications for the previous layer with the com-
putation for the current layer.

5 SYSTEMS AND SOFTWARE
5.1 Cori
We use the “data” partition of the Cori system at the National
Energy Research Scientific Computing Center (NERSC) at Lawrence

15https://pytorch.org/docs/stable/distributed.html
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Table 1: Intel®Xeon® CPU models and codes

Model Code
E5-2695 v2 @ 2.40GHz (12 cores/socket) IVB
E5-2698 v3 @ 2.30GHz (16 cores/socket) HSW
E5-2697A v4 @ 2.60GHz (16 cores/socket) BDW
Platinum 8170 @ 2.10GHz (26 cores/socket) SKL
Gold 6252 @ 2.10GHz (24 cores/socket) CSL

Berkeley National Laboratory. Cori is a Cray XC40 system, and the
data partition features 2,388 nodes. Each node has two sockets and
each socket is populated with a 16-core 2.3 GHz Intel® Xeon® E5-
2698 v3 CPU (referred to as HSW from now on), with peak single-
precision (SP) performance of 1.2 Tflop/s and 128 GB of DDR4-
2133 DRAM. Nodes are connected via the Cray Aries low-latency,
high-bandwidth interconnect utilizing the dragonfly topology. In
addition, the Cori system contains 288 Cray DataWarp nodes (also
known as the “Burst Buffer”) which house the input datasets for the
Cori experiments presented here. Each DataWarp node contains
2 × 3.2 TB SSDs, giving a system total of 1.8 PB of SSD storage,
with up to 1.7 TB/sec read/write performance and over 28M IOP/s.
Cori also has a Sonnexion 2000 Lustre filesystem, which consists of
248 Object Storage Targets (OSTs) and 10,168 disks, giving nearly
30 PB of storage and a maximum of 700 GB/sec IO performance.
This filesystem is used for output files (networks and logs) for Cori
experiments and both input and output for the Edison experiments.

5.2 Edison
We also make use of the Edison system at NERSC. Edison is a Cray
XC30 system with 5,586 nodes. Each node has two sockets, each
socket is populated with a 12-core 2.4 GHz Intel® Xeon® E5-2695
v2 CPU (referred to as IVB from now on), with peak performance
of 460.8 SP Gflop/s, and 64 GB DDR3-1866 memory. Edison mounts
the Cori Lustre filesystem described above.

5.3 Diamond cluster
In order to evaluate and improve the performance on newer Intel®
processors we make use of the Diamond cluster, a small heteroge-
neous cluster maintained by Intel Corporation. The interconnect
uses Intel® Omni-Path Architecture switches and host adapters.
The nodes used for the results in this paper are all two socket
nodes. Table 1 presents the CPU models used and the three letter
abbreviations used in this paper.

5.4 Particle physics simulation software
In our experiments we use Sherpa version 2.2.3, coupled to a fast
3D detector simulator that we configure to use 20x35x35 voxels.
Sherpa is implemented in C++, and therefore we use the C++ front
end for PPX. We couple to Sherpa by a system-wide rerouting of
the calls to the random number generator, which is made easy by
the existence of a third-party random number generator interface
(External_RNG) already present in Sherpa.

For this paper, in order to facilitate reproducible experiments,
we run in the offline training mode and produce a sample of 15M
traces that occupy 1.7 TB on disk. Generation of this 15M dataset

Table 2: Single node training throughput in traces/sec and
flop rate (Gflop/s). 1-socket throughput and flop rate are for
a single process while 2-socket is for 2 MPI processes on a
single node.

1-socket 2-socket 1-socket
Platform traces/s traces/s Gflop/s (% peak)
IVB (Edison) 13.9 25.6 196 (43%)
HSW (Cori) 32.1 56.5 453 (38%)
BDW (Diamond) 30.5 57.8 430 (32%)
SKL (Diamond) 49.9 82.7 704 (20%)
CSL (Diamond) 51.1 93.1 720 (22%)

was completed in 3 hours on 32 IVB nodes of Edison. The traces
are stored using Python shelve16 serialization, allowing random
access to all entries contained in the collection of files with 100k
traces in each file. These serialized files are accessed via the Python
dbm module using the gdbm backend.

6 EXPERIMENTS AND RESULTS
6.1 Single node performance
We ran single node tests with one rank per socket for one and
two ranks on the IVB nodes on Edison, the HSW partition of Cori
and the BDW, SKL, and CSL nodes of the Diamond cluster. Table 2
shows the throughput and single socket flop rate and percentage of
peak theoretical flop rate. We find that the optimizations described
in Section 4.4.2 provide an improvement of 7x on the overall single
socket run throughput (measured on HSW) relative to a default
PyTorch version v1.0.0 installed via the official conda channel. We
achieve 430 SP Gflop/s on a single socket of the BDW system,
measured using the available hardware counters for 256-bit packed
SIMD single precision operations. This includes IO and is averaged
over an entire 300k trace run. This can be compared to a theoretical
peak flop rate for that BDW socket of 1,331 SP Gflop/s. Flop rates
for other platforms are scaled from this measurement and given in
Table 2. For further profiling we instrument the code with timers
for each phase of the training (in order): minibatch read, forward,
backward, and optimize. Figure 4 shows a breakdown of the time
spent on a single socket after the optimizations described in Sections
4.4.1 and 4.4.2.17

6.2 Multi-node performance
In addition to the single socket operations, we time the two synchro-
nization (allreduce) phases (gradient and loss). This information is
recorded for each rank and each minibatch. Postprocessing finds
the rank with the maximum work time (sum of the four phases
mentioned in Section 6.1) and adds the times together. This gives
the actual execution time. Further, we compute the average time
across ranks for each work phase for each minibatch and add those
together, giving the best time assuming no load imbalance. The re-
sults are shown in Figure 4. Comparing single socket results with 2
and 64 socket results shows the increased impact of load imbalance

16https://docs.python.org/3/library/shelve.html
17See disclaimers section after conclusions.
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Figure 5: Mean loss and standard deviation (shaded) for five
experiments with 128k minibatch size.

as nodes are added. This demonstrates a particular challenge of
this project where the load on each node depends on the random
minibatch of traces sampled for training on that node. The chal-
lenge and possible mitigation approaches we explored are discussed
further in Section 7.2.

6.3 Large scale training on Cori and Edison
In order to choose training hyperparameters, we explored global
minibatch sizes of {64, 2k, 32k, 128k}, and learning rates in the
range

[
10−7, 10−1

]
with grid search and compared the loss values

after one epoch to find the optimal learning rate for different global
minibatch sizes separately. For global minibatch sizes of 2k, 32k, and
128k, we trained with both Adam and Adam-LARC optimizers and
compared loss value changes as a function of iterations. For training

at 1,024 nodes we choose to use 32k and 128k global minibatch sizes.
For the 128k minibatch size, best convergence was found using the
Adam-LARC optimizer with a polynomial decay (order=2) learning
rate schedule [76] that decays from an initial global learning rate
of 5.70 × 10−4 to final 2 × 10−5 after completing 12 epochs for
the dataset with 15M traces. In Figure 5, we show the mean and
standard-deviation for five training runs with this 128k minibatch
size and optimizer, demonstrating stable convergence.

Figure 6 shows weak scaling results obtained for distributed
training to over a thousand nodes on both the Cori and Edison sys-
tems. We use a fixed local minibatch size of 64 per rank with 2 ranks
per node, and plot the mean and standard deviation throughput for
each iteration in terms of traces/s (labeled “average” in the plot). We
also show the fastest iteration (labeled “peak”). The average scaling
efficiency at 1,024 nodes is 0.79 on Edison and 0.5 on Cori. The
throughput at 1,024 nodes on Cori and Edison is 28,000 and 22,000
traces/s on average, with the peak as 42,000 and 28,000 traces/s
respectively. One can also see that there is some variation in this
performance due to the different compute times taken to process
execution traces of different length and the related load imbalance
as discussed in Sections 6.2 and 7.2. We determine the maximum
sustained performance over a 10-iteration sliding window to be
450 Tflop/s on Cori and 325 Tflop/s on Edison.18

We have performed distributed training with global minibatch
sizes of 32k and 128k at 1,024-node scale for extended periods to
achieve convergence on both Cori and Edison systems. This is
illustrated in Figure 7 where we show the loss for training and
validation datasets as a function of iteration for an example run on
Edison.

6.4 Inference and science results
Using our framework and the NNs trained using distributed re-
sources at NERSC as described previously, we perform inference on
test τ observation data that has not been used for training. As the
approach of applying probabilistic programming in the setting of
large-scale existing simulators is completely novel, there is no direct
baseline in literature that provides the full posterior in each of these
variables. Therefore we use our ownMCMC (RMH)-based posterior
as a baseline for the validation of the IC approach. We establish
the convergence of the RMH posterior by running two indepen-
dent MCMC chains with different initializations and computing the
the Gelman–Rubin convergence metric [24] to confirm that they
converge onto the same posterior distribution (Section 4.2).

Figure 8 shows a comparison of inference results from the RMH
and IC approaches. We show selected latent variables (addresses)
that are a small subset of the more than 24k addresses that were
encountered in the prior space of the Sherpa experimental setup,
but are of physics interest in that they correspond to properties of
the τ particle. It can be seen that there is close agreement between
the RMH and IC posterior distributions validating that our network
has been adequately trained. We have made various improvements
to the RMH inference processing rate but this form of inference
is compute intensive and takes 115 hours on a Edison IVB node
to produce the 7.68M trace result shown. The corresponding 2M
trace IC result completed in 30 mins (achieving a 230× speedup

18See disclaimers section after conclusions.
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Figure 7: Training and validation loss for a 128k minibatch
size experiment with the configuration described in the text
run on 1,024 nodes of the Edison system.

for a comparable posterior result) on 24 HSW nodes, enabled by
the parallelism of IC inference.

In addition to parallelization, a significant advantage of the IC
approach is that it is amortized. This means that once the proposal
NN is trained for any given model, it can be readily applied to large
volumes of new collision data. Moreover IC inference runs with
high effective sample sizes in comparison to RMH: each sample
from the IC NN is an independent sample from the proposal distri-
bution, which approaches the true posterior distribution with more
training, whereas our autocorrelation measurements in the RMH
posterior indicate that a very large number of iterations are needed
to get statistically independent traces (on the order of ∼ 105 for
the type of decay event we use as the observation). These features
of IC inference combine to provide a tractable approach for fast

Bayesian inference in complex models implemented by large-scale
simulators.

7 DISCUSSION
The dynamic NN architecture employed for this project has pre-
sented a number of unique challenges for distributed training,
which we covered in Section 4.4. Our innovations proved successful
in enabling the training of this architecture at scale, and in this
section we capture some of the lessons learned and unresolved
issues encountered in our experiments.

7.1 Time to solution: trade-off between
throughput and convergence

7.1.1 Increasing effective local minibatch size. As mentioned in
Section 4.4.1, the distributed SGD scheme given in Algorithms 1
and 2 uses random traces sampled from the simulator, and can
suffer from slow training throughput if computation cannot be
efficiently parallelized across the full minibatch due to the presence
of different trace types. Therefore, we explored the following meth-
ods to improve effective minibatch size: sorting the traces before
batching, online batching of the same trace types together, and
multi-bucketing. Each of these methods can improve throughput,
but risk introducing bias into SGD training or increasing the num-
ber of iterations to converge, so we compare the wall clock time
for convergence to determine the relative trade-off. The impact
of multi-bucketing is described and discussed in section 7.2 below.
Sorting and batching traces from the same trace type together offers
considerable throughput increase with a relatively small impact
on convergence, when combined with shuffling of minibatches for
randomness, so we used these throughput optimizations for the
results in this paper.

7.1.2 Choice of optimizers, learning rate scaling and scheduling for
convergence. There is considerable recent literature on techniques
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Figure 8: A comparison of posterior distributions obtained
by RMH (filled histograms) and IC (outline histograms) and
the ground truth values (dashed vertical lines) for a test τ de-
cay observation.We show an illustrative subset of the latent
variables, including x, y and z components of the τ -lepton
momentum (top row), the energies of the twohighest energy
particles produced by the τ decay (middle left and bottom
center), a contour plot showing correlation between these
(bottom left), the τ decay channel (τ → π ντ as mode) (mid-
dle right), and the missing transverse energy (bottom right).

for distributed and large-minibatch training, including scaling learn-
ing rates with number of nodes [31], alternative optimizers for
large-minibatch-size training, and learning rate decay [27, 41, 76].
The network employed in this project presents a very different
use-case to those considered in literature, prompting us to docu-
ment our experiences here. For learning rate scaling with node
count, we found sub-sqrt learning rate scaling works better than
linear for an Adam-based optimizer [41]. We also compared Adam
with the newer Adam-LARC optimizer [27, 76] for convergence
performance and found the Adam-LARC optimizer to perform bet-
ter for the very large global minibatch size 128k in our case. For
smaller global minibatch sizes of 32K or lower, both plain Adam
and Adam-LARC performed equally well. Finally, for the learning
rate decay scheduler, we explored the following options: no decay,
multi-step decay (per epoch), and polynomial decay of order 1 or 2
(calculated per iteration) [76]. We found that learning-rate decay
can improve training performance and polynomial decay of order
2 provided the most effective schedule.

7.2 Load balancing
As indicated in Section 6.2, our work involves distinct scaling chal-
lenges due to the variation in compute time depending on execution
trace length, address-dependent proposal and embedding layers,
and representation of trace types inside each minibatch. These fac-
tors contribute to load imbalance. The trace length variation bears
similarity to varying sequence lengths in NMT; however, unlike
that case it is not possible to truncate the execution traces, and
padding would introduce a cost to overall number of operations.

To resolve this load imbalance issue, we have explored a number
of options, building on those fromNMT, including amulti-bucketing
scheme and a novel dynamic batching approach.

In multi-bucketing [10, 20, 40], traces are grouped into several
buckets based on lengths, and every global minibatch is solely
taken from a randomly picked bucket for every iteration. Multi-
bucketing not only helps to balance the load among ranks for the
same iteration, but also increases the effective minibatch size as
traces from the same trace type have a higher chance to be in the
same minibatch than in the non-bucketing case, achieving higher
throughput. For a local minibatch-size of 16 with 10 buckets wemea-
sured throughput increases in the range of 30–60% at 128–256 node
scale on Cori. However, our current multi-bucketing implementa-
tion does multiple updates in the same bucket continuously. When
this implementation is used together with batching the traces from
the same trace type together (as discussed above in Section 7.1.1), it
negatively impacts convergence behavior. We believe this to be due
to the fact that training on each specific bucket for multiple updates
introduces over-fitting onto that specific subset of networks so
moving to a new bucket for multiple updates causes information of
the progress made with previous buckets to be lost. As such we did
not employ this configuration for the results reported in this paper.

With dynamic batching, we replaced the requirement of fixed
minibatch size per rank with a desired number of “tokens” per rank
(where a token is a unit of random number draws in each trace), so
that we can, for instance, allocate many short traces (with smaller
number of tokens each) for one rank but only a few long traces for
another rank, in order to balance the load for the LSTM network
due to length variation. While an equal-token approach has been
used in NMT, this did not offer throughput gains for our model,
which has an additional 3DCNN component in which the compute
time depends on the number of traces within the local minibatch,
so if dynamic batching only considers total tokens per rank for the
LSTM it can negatively impact the 3DCNN load.

Through these experiments we found that our current optimal
throughput and convergence performance came from not employ-
ing these load-balancing schemes although we intend to explore
modifications to these schemes as ongoing work.

8 SCIENCE IMPLICATIONS AND OUTLOOK
We have provided a common interface to connect PPLs with simu-
lators written in arbitrary code in a broad range of programming
languages. This opens up possibilities for future work in all applied
fields where simulators are used to model real-world systems, in-
cluding epidemiology modeling such as disease transmission and
prevention models [66], autonomous vehicle and reinforcement
learning environments [21], cosmology [7], and climate science
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[68]. In particular, the ability to control existing simulators at scale
and to generate interpretable posteriors is relevant to scientific
domains where interpretability in model inference is critical.

We have demonstrated both MCMC- and IC-based inference of
detector data originating from τ -decays simulated with the Sherpa
Monte Carlo generator at scale. This offers, for the first time, the
potential of Bayesian inference on the full latent structure of the
large numbers of collision events produced at accelerators such
as the LHC, enabling deep interpretation of observed events. For
instance, ambiguity in the decay of a particle can be related exactly
to the physics processes in the simulator that would give rise to
that ambiguity. In order to fully realize this potential, future work
will expand this framework to more complex particle decays (such
as the Higgs decay to τ leptons) and incorporate a more detailed
detector simulation (e.g., Geant4 [6]). We will demonstrate this on
a full LHC physics analysis, reproducing the efficiency of point-
estimates, together with the full posterior and intpretability, so that
this can be exploited for discovery of new fundamental physics.

The IC objective is designed so that the NN proposal q(x|y) ap-
proximates the posterior p(x|y) asymptotically closely with more
training. This costly training phase needs to be done only once for
a given simulator-based model, giving us a NN that can provide
samples from the model posterior in parallel for any new observed
data. In this setting where have a fast, amortized q(x|y) ≈ p(x|y),
our ultimate goal is to add the machinery of Bayesian inference
to the toolbox for critical tasks such as triggering [1] and event
reconstruction by conditioning on potentially interesting events
(e.g., q(ParticleType|·) ≥ ϵ). Recent activity exploring the use of
FPGAs for NN inference for particle physics [23] will help imple-
mentation of these approaches, and HPC systems will be crucial in
the training and inference phases of such frameworks.

9 CONCLUSIONS
Inference in simulator-based models remains a challenging problem
with potential impact across many disciplines [14, 60]. In this paper
we present the first probabilistic programming implementation ca-
pable of controlling existing simulators and running at large-scale
on HPC platforms. Through the PPX protocol, our framework suc-
cessfully couples with large-scale scientific simulators leveraging
thousands of lines of existing simulation code encoding domain-
expert knowledge. To perform efficient inference we make use of
the inference compilation technique, and we train a dynamic neural
network involving LSTM and 3DCNN components, with a large
global minibatch size of 128k. IC inference achieved a 230× speedup
compared with the MCMC baseline. We optimize the popular Py-
Torch framework to achieve a significant single-socket speedup for
our network and 20–43% of peak theoretical flop rate on a range
of current CPUs.19 We augment and develop PyTorch’s MPI im-
plementation to run it at the unprecedented scale of 1,024 nodes
(32,768 and 24,576 cores) of the Cori and Edison supercomputers
with a sustained flop rate of 0.45 Pflop/s. We demonstrate we can
successfully train this network to convergence at these large scales,
and use this to perform efficient inference on LHC collision events.
The developments described here open the door for exploiting HPC

19See disclaimers section after conclusions.

resources and existing detailed scientific simulators to perform
rapid Bayesian inference in very complex scientific settings.
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Abstract

We introduce two approaches for conducting
effective approximate inference in stochastic
simulators containing nested stochastic sub-
procedures, i.e. internal procedures for which
the density cannot be calculated directly such
as rejection sampling loops and nested infer-
ences. The resulting class of simulators are
used extensively throughout the sciences, but
fall outside the standard class of Bayesian
models: they are doubly intractable. Draw-
ing inferences from them poses a substantial
challenge due to the inability to evaluate even
their unnormalized density, preventing the
use of standard procedures. In particular, the
small number of specialized existing meth-
ods that can deal with such models are based
around forward sampling and thus scale catas-
trophically poorly in the dimensionality. To
address this, we introduce algorithms based
on a two-step approach that first approxi-
mates the conditional densities of the individ-
ual sub-procedures, before using these approx-
imations to run an MCMC sampler on the
full simulator. Because the sub-procedures
can be dealt with separately and are lower-
dimensional than the overall problem, this
two-step process allows them to be isolated,
and thus tractably dealt with, without placing
restrictions on the overall dimensionality. We
show empirically that our approaches provide
effective inference in settings that cannot be
practically handled by existing methodology.

Preliminary work. Under review by UAI 2021. Do not
distribute.

1 Introduction

Stochastic simulators are used in a myriad of scientific
and industrial settings, such as epidemiology (Patlolla
et al., 2004; Ferguson et al., 2006; Smith et al., 2008),
physics (Heermann, 1990; Gleisberg et al., 2009), en-
gineering (Hangos and Cameron, 2001) and climate
modelling (Held, 2005). They can be complex and
high-dimensional, often incorporating domain-specific
expertise accumulated over many years of development.

As shown by the probabilistic programming (Goodman
et al., 2012; Gordon et al., 2014; van de Meent et al.,
2018) and approximate Bayesian computation (ABC)
(Csilléry et al., 2010; Marin et al., 2012) literatures,
these simulators can be interpreted as probabilistic
generative models, implicitly defining a probability dis-
tribution over their internal variables and outputs. As
such, they form valid targets for drawing Bayesian
inferences. In particular, by constraining selected in-
ternal variables or outputs to take on specific values,
we implicitly define a conditional distribution, or pos-
terior, over the remaining variables. This effectively
allows us to, amongst other things, run the simulator
in reverse, fixing the outputs to some observed values
and inferring what parameter values might have led
to them. For example, given a simulator for modeling
high-energy physics (Gleisberg et al., 2009), we can
run inference on the simulator with an observed energy
deposit to infer what decay patterns might have led to
them (Baydin et al., 2019a).

Though recent advances in probabilistic programming
systems (PPSs) (Le et al., 2017; Tran et al., 2017;
Rainforth, 2018; Bingham et al., 2019) have provided
convenient mechanisms for encoding and reasoning
about such simulators, performing the necessary infer-
ence is still often extremely challenging, particularly
for complex or high-dimensional problems.

In this paper, we consider a scenario where this in-
ference is particularly challenging to perform: when
the simulator makes calls to nested stochastic sub-
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procedures (NSSPs). These can take several different
forms, such as internal rejection sampling loops (Gleis-
berg et al., 2009; Di Pasquale et al., 2015), nested
inference procedures (Smith et al., 2008; Stuhlmüller
and Goodman, 2014; Bershteyn et al., 2018; Rainforth,
2018), external sub-simulators we have no control over,
or even real-world experiments (Foster et al., 2019).

Their unifying common feature is that the density
of their outputs cannot be evaluated up to an input-
independent normalizing constant in closed form. This,
in turn, means the normalized density of the overall sim-
ulator cannot be evaluated. They therefore fall outside
the standard class of Bayesian inference problems; they
are doubly intractable (Murray, 2007). This prevents
one from using most common inference methods, such
as conventional Markov Chain Monte Carlo (MCMC)
and variational inference approaches. In some cases,
such as nested probabilistic programs (Stuhlmüller and
Goodman, 2014; Rainforth, 2018), one cannot even
directly construct consistent Monte Carlo estimator
at all, having to instead turn to nested estimation
approaches (Rainforth et al., 2018), such as nested im-
portance sampling (Rainforth, 2018; Naderiparizi et al.,
2019). These have fundamentally slower convergence
rates than standard Monte Carlo approaches (Fort
et al., 2017; Rainforth et al., 2018) and thus want to
be avoided at all costs.

Even for the subclass of NSSPs where these issues with
nesting can be avoided, existing applicable approaches
rely on forward sampling to get around the lack of a
closed form density (Goodman et al., 2012; Wood et al.,
2014; Rainforth, 2017). This forward sampling typically
suffers acutely from the curse of dimensionality and
thus circumvents the use of such approaches on all but
simplest of problems.

To address these issues, we introduce two new ap-
proaches for performing inference in such models. Both
are based around approximating the individual NSSPs.
The first, generally applicable, approach directly ap-
proximates the conditional density of the NSSP outputs
using an amortized inference artefact. This then forms
a surrogate density for the NSSP, which, once trained,
is used to replace it.

Our second approach focuses on the specific case where
the unnormalized density of the NSSP can be evaluated
in isolation, such as a nested probabilistic program
or rejection sampling loop, where but its normalizing
constant depends on the NSSP inputs. Here, we train
a regressor to approximate the normalizing constant
of the NSSP as a function of its inputs. Once learnt,
this allows the NSSP to be collapsed into the outer
program: the ratio of the known unnormalized density
and the approximated normalizing constant can be

directly used as a factor in the overall density.

Both approaches lead to an approximate version of the
overall unnormalized density, which can then be used as
a target for conventional inference methods like MCMC
and variational inference. Because these approxima-
tions can be calculated separately for each NSSP, this
allows the approach to scale to higher dimensional
overall simulators far more gracefully than existing
approaches, opening the door to tractably running in-
ference for much more complex problems. Further,
once trained, the approximations can be reused for
different datasets and configurations of the outer simu-
lator, thereby amortizing the cost of running multiple
different inferences for no extra cost. The approaches
themselves are also amenable to automation, making
them suitable candidates for PPS inference engines.

We confirm the utility of our approaches using a con-
ceptually simple, but numerically challenging, artificial
simulator that has been carefully constructed to allow
analytic calculation of a ground truth. Namely, we
show that while existing approaches completely break
down in more than a few dimensions, our approach is
able to gracefully scale with increasing dimensionality
and produce effective inference.

2 Background and Problem
Formulation

NSSPs arise naturally in many real-world systems.
Sometimes they are inherent to the model itself, such as
in nested inference settings (Rainforth, 2018), whereby
restrictions in the flow of information cause a dou-
ble intractability (Murray et al., 2006), e.g., because
we are modeling two agents reasoning about each
other (Stuhlmüller and Goodman, 2014). They can
also occur because we only have access to a sampler for
part of the model and not its density—e.g., because the
simulator relies on rejection sampling loops (Gleisberg
et al., 2009; Di Pasquale et al., 2015) or comprises of
a complex external simulator of its own (Marin et al.,
2012). Of particular note, recent breakthroughs in
universal probabilistic programming to large-scale sci-
entific simulators (Lezcano Casado et al., 2017; Baydin
et al., 2019a; Gram-Hansen et al., 2019), have provided
automated ways to translate existing large scale stochas-
tic simulators into probabilistic programming systems,
without having to re-write the existing simulator in-
side the given PPS. However, many of these simulators
contain NSSPs.

We now formalize the problem of models containing
NSSPs before providing some background on existing
strategies for coping with them.
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2.1 Problem Formulation

For any simulator or program, we can define the pro-
gram density over valid program traces x1:nx

as:

p(x1:nx) ∝ γ(x1:nx) =

nx∏

j=1

faj (xj |φj)
ny∏

k=1

gbk(yk|ψk)

(1)

Here nx is the length of the trace. Each faj (xj |φj)
represents the density of the jth random draw, which is
made at location aj and takes in parameters φj . ny is a
number of observations, each of which factor the trace
density by gbk(yk|ψk), where bk is the location of this
observation statement, yk is the observed value, and ψk
are parameters of the factorization. All terms—i.e., xj ,
nx, aj , φj , ny, bk, yk, ψk—may be random variables,
but each is deterministically calculable from the trace
x1:nx

(see, e.g., Rainforth (2017, Section 4.3.2)).

A NSSP can now be formally defined as a faj (xj |φj)
term which cannot be directly evaluated exactly, but
where for a given φj either [Case A] we can draw
samples from faj (xj |φj) directly or [Case B] we
have access to an unnormalized form of the density
γinaj (xj |φj),1 but do not know the corresponding input
dependent normalization constant Iaj (φj). In some
cases, NSSPs can correspond to both cases (i.e. we
can sample and have the unnormalized density), but
all NSSPs must conform to at least one of them as
otherwise the density would be undefined.

We can now denote the unnormalized density for a
program containing NSSPs as:

γ(x1:nx
) =Ppr(x1:nx

)

ny∏

k=1

gbk(yk|ψk) where (2)

Ppr(x1:nx
) :=

∏

{j∈1:nx|aj /∈Sr}
faj (xj |φj)

∏

{j∈1:nx|aj∈Sr}
P inaj (xj |φj) (3)

is a representation of the forward or prior program
which ignores all conditioning statements; Sr =
{a1, . . . , an} represents the set of addresses that pro-
duce intractable densities; and we use P inaj (xj |φj) to dis-
tinguish the NSSPs from tractable sampling terms. We
explain how to addresses ai ∈ Sr can be extracted au-
tomatically from real-world simulators in Appendix A
(see also Gram-Hansen et al. (2019); Baydin et al.
(2019b)), but for now we will just assume they are
known, which is often the case in practice anyway.

1More typically, we actually only have access to some
pre-image of γin

aj
(xj |φj), which turns out to be sufficient.

See Section 3.2.

2.2 Forward Sampling

The issues imposed by NSSPs of type Case A are im-
mediately apparent: we have no direct characterization
of the density of the NSSP at all and must somehow
leverage our ability to generate samples from the NSSP
to run our overall inference. The simplest way to do
this is to simply forward sample from the full pro-
gram (Goodman et al., 2012), that is draw samples
from Ppr(x1:nx

), before weighting these samples us-
ing

∏ny

k=1 gbk(yk|ψk) (Rainforth, 2017). This likelihood
weighting approach equates to importance sampling us-
ing the prior as our proposal and thus inevitably scales
catastrophically poorly as the dimension increases.

Unfortunately, it transpires to be surprisingly difficult
to improve on this naive approach. One setting in which
improvements can be made is if that if the number of
observations ny is fixed and these observations are
interleaved with the sampling statements. Here we
can employ particle based inference methods (Wood
et al., 2014), like sequential Monte Carlo (Doucet et al.,
2001), to exploit the intermediary information provided
by these observations. However, many, if not most,
models do not possess such interleaving, for which such
methods regress back to simple likelihood weighting.

In principle, one can also use Approximate Bayesian
Computation (ABC) methods in such settings (Tavare
et al., 1997; Pritchard et al., 1999; Sunnåker et al.,
2013). However, these will generally be inferior to sim-
ply likelihood weighting: the density of the likelihood
of our overall program is actually directly evaluable, it
is the density of our prior that is intractable, meaning
that such approximations are not generally necessary.

2.3 Nested Monte Carlo and Nested
Inference

The issues imposed by NSSPs of type Case B are ar-
guably more subtle. To understand these, we observe
that they are equivalent to nested probabilistic pro-
grams (Stuhlmüller and Goodman, 2014; Rainforth,
2018): they define their own normalized density and
require separate, nested, inference procedures to be
run—either to draw samples or to estimate their pos-
terior density—for each sample realization of the outer
program. Such problems are known as nested inference
problems (Mantadelis and Janssens, 2011; Rainforth,
2018) and they correspond to a more general class
of problems than conventional Bayesian inference. In
essence, the nesting corresponds to a local normal-
ization of the density, rendering the problem doubly
intractable because we have to solve an intractable
inference for each realization of the outer program.

Conducting inference in such problems requires the
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use of nested estimators, most typically nested Monte
Carlo (NMC, Fort et al. (2017); Rainforth et al. (2018));
naïvely running conventional inference approaches like
MCMC leads to inconsistent estimators with substan-
tial asymptotic biases. Rainforth (2018) show how
consistent nested estimators can be derived through
a careful nesting of importance samplers wherein the
estimators for the nested programs use more samples as
the number of iterations of the outer program increases.
Though this is arguably inevitable (Rainforth et al.,
2018), the resulting convergence rates of these nested
importance samplers are, unfortunately, fundamentally
slower than conventional Monte Carlo. Namely the
mean squared errors of their estimators converge at
rate O(1/N2/3) rather than O(1/N) in the number
of samples N . Moreover, because of the reliance on
importance sampling, such approaches suffer acutely
from the curse of dimensionality and cannot be used on
anything but the most simple problems. Despite this,
they remain the state-of-the-art approach for dealing
with such problems (Naderiparizi et al., 2019).

3 Approximating NSSPs

We now introduce our approaches for approximating
NSSPs and show how these approximations can, in turn,
be used to produce efficient inference algorithms for the
overall simulator. Both methods are based on replacing
each of the intractable NSSP densities, i.e. P inaj (xj |φj)
in (3), with an approximation. Once learned, these can
then be used to construct a directly evaluable approxi-
mate target density γ̂(x1:nx

) ≈ γ(x1:nx
) by replacing

each P inaj (xj |φj) in (3), then running an MCMC sam-
pler (or some other conventional inference method) on
γ̂(x1:nx). The performance for the resulting estimators
thus depends on both the accuracy of approximations
γ̂(x1:nx

), in a manner akin to the error in variational
inference but without requiring of mean field assump-
tions, and the efficiency of the MCMC sampling.

To be more specific, our approaches involve the
gradient-based learning of a neural-network-based
amortized approximation for each NSSP that takes
in the NSSP inputs and either returns an approxima-
tion of the density of the outputs (Method 1) or the
normalizing constant (Method 2).

Note the critical feature that learning these approxi-
mations does not require access to the observations of
the outer program (i.e. the gbk); they operate only on
the prior program Ppr(x1:nx

). Moreover, the learning
them can be done independently for each NSSP: the
outer program is used only to provide typical example
inputs to each NSSP and does not effect the relative
optimality of the approximation of each NSSP for a
given input. As such, the learning of these approxima-

tion should, at least in theory, scale only with the size
of the individual NSSPs, not the number of NSSPs or
the dimensionality of the overall problem.

3.1 Method 1: Surrogate Replacement

Our first method is based around learning an amortized
variational approximation of each NSSP. The goal of
amortization is to learn a parameterized function that
can map from different sets of observations (Kingma
and Welling, 2014; Rezende et al., 2014) to parameters
that define an approximate posterior distribution un-
der those observations. This means we learn a set of
parameters once, during an offline training procedure,
that can then be used as an approximation of the poste-
rior for all possible inputs. In the typical setting these
inputs would be data, but for us they will correspond
to the NSSP inputs φj .

To be precise, our method replaces each P inaj (xj |φj) by
an approximate surrogate qinaj (xj |φj ; ηaj ):

Ppr(x1:nx) ' q(x1:nx ;κ) :=
∏

{j∈1:nx|aj /∈Sr}
faj (xj |φj)

∏

{j∈1:nx|aj∈Sr}
qinaj (xj |φj ; ηaj )

where κ = {ηaj ; aj ∈ Sr} are the surrogate param-
eters. Following existing amortized variational ap-
proaches (Kingma and Welling, 2014; Rezende et al.,
2014; Le et al., 2017; Ritchie et al., 2016; Paige and
Wood, 2016), each qinaj (xj |φj ; ηaj ) is taken as a vari-
ational distribution parametrized by a deep neural
network with weights ηaj and takes φj as its input.
Training of these networks is done by minimizing the
Kullback–Leibler (KL) divergence from Ppr(x1:nx

) to
q(x1:nx ;κ) (Paige and Wood, 2016)

KL(Ppr(x1:nx
)||q(x1:nx

;κ))

=

∫
Ppr(x1:nx) log

(
Ppr(x1:nx)

q(x1:nx
;κ)

)
dx.

The optimal network parameters are now given by

κ∗ = argmin
κ

KL (Ppr||qκ)

= argmin
{ηaj

;aj∈Sr}
EPpr


 ∑

{j∈1:nx|aj∈Sr}
− log qinaj (xj |φj ; ηaj )




(4)

η∗r = argmax
ηr

EPpr



nx∑

j=1

I(r = aj) log(qinr (xj |φj ; ηr))




(5)

∀r ∈ Sr. Because each individual problem is low di-
mensional, we can efficiently learn an approximation
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to each NSSP in the set Sr, noting from (5) that these
effectively break down into separate problems. As the
expectations of equation (4) and (5) are with respect
to the simulator density, the required minimization can
be done using stochastic gradient descent. Namely, we
can generate (potentially approximate) input-output
pairs {φj , xj} by running the forward simulator and
then use the gradient estimator (∀r ∈ Sr)

∇ηrKL ≈ − 1

N

N∑

k=1

nx∑

j=1

I(r = akj )∇ηr log(qinr (xkj |φij ; ηr)).

If the given NSSP is of type Case A, drawing these
samples is straightforward as, by assumption, we can
then draw samples from each P inaj (xj |φj) and, in turn,
samples from Ppr, which is computationally cheap.
However, if our program contains NSSPs of type Case
B, this will require us to run a separate nested infer-
ence (Rainforth, 2018) on these NSSPs to generate the
required xkj from the corresponding φj . Though this is
potentially non-trivial, it is, crucially, far easier than
running inference on the overall program: because Ppr
itself does not include any conditioning statements,
generating these samples does not require inference to
be run for the outer program. As such, each nested
inference problem constitutes its own isolated problem
which is far simpler than the overall inference. In other
words, the role of sampling from Ppr is only to generate
example input-output pairs for each NSSP, with each
surrogate then separately trained using its local pairs.

3.2 Method 2: Normalization Constant
Approximation

If all of our NSSPs satisfy Case B, this implies that
each has a known unnormalized density on its internal
variables and unknown input-dependent normalizing
constant that causes a double-intractability. If the
functional forms for all these normalizing constants
were known, this would be sufficient to collapse all the
NSSPs into the outer program and produce a directly
evaluable density for the overall program. Our sec-
ond method thus looks to learn regressors to predict
the normalizing constants and thereby facilitate this.
Though in this approach we still use the NSSPs after
the regressors have been learned, we no long need to
perform a nested inference on them: we have converted
the problem from a doubly-intractable inference, to a
conventional inference.

To formalize this, let us for now assume that the xj
returned by each NSSP corresponds to its full set of

internal random draws zj
1:nj

x
, i.e., xj = zj

1:nj
x
, such that

P inaj (xj |φj) =
γinaj (xj |φj)
Iaj (φj)

=
γinaj

(
zj
1:nj

x

∣∣∣φj
)

Iaj (φj)
(6)

where γinaj (zj
1:nj

x
|φj) can be evaluated directly, because it

is itself an unnormalized probabilistic program density
of the form (1), but Iaj (φj) is an intractable normaliza-
tion constant. If we now introduce a set of regressors
Rr(φj ; τr), ∀r ∈ Sr, with parameters τr, to approxi-
mate each Iinr (φj), we can approximate Ppr as

Ppr(x1:nx
) '

∏

{j∈1:nx|aj /∈Sr}
faj (xj |φj)

∏

{j∈1:nx|aj∈Sr}

γinaj

(
zj
1:nj

x

∣∣∣φj
)

Raj (φj ; τaj )
.

We can extend this approach to the case where xj =

Ω(zj
1:nj

x
) for some deterministic function Ω, by instead

defining our reference measure in the space of Xa :=
{xj}j∈1:nx|aj /∈Sr

∪{zj
1:nj

x
}j∈1:nx|aj∈Sr

and using the pre-
image of the prior program density: Ppr (Xa). We can
then run inference in this pre-image space and rely on
the law of the unconscious statistician to ensure the
samples produced are from the desired posterior, see
e.g., Rainforth (2017, Section 4.3.2).

Learning the regressors Rr(φj ; τr) is done in a simi-
lar vein to method 1. Namely we run the simulator
forward to gather pairs {φj , Îr(φj)} for each NSSP,
where Îr(φj) is an unbiased approximation of Ir(φj),
and then use this as a training dataset for learning the
regressor. Specifically, for each NSSP we train a neural
network regressor to minimize the expected squared er-
ror between Rr(φj ; τr) and Îr(φj). Thus, our objective
and gradient update are:

Lr = E
[(
Rr(φj ; τr)− Îr(φj)

)2]
, (7)

∇τrLr = E
[
∇τr

(
Rr(φj ; τr)− Îr(φj)

)2]
(8)

where the expectation is over both the estimates and
the inputs φj , with the distribution of the latter defined
by running Ppr forward and, if necessary, randomly
selecting between the inputs that are passed to NSSP r
if it is called more than once. This can further be Rao-
Blackwellized by averaging over all the inputs passed
to the NSSP instead of choosing between them. Thus,
by running the simulator forward, collecting samples
from the NSSPs generated from sampling the priors
of each NSSP, we can make updates based on Monte
Carlo estimates of ∇τrLr.
This scheme results in Rr(φj ; τr) = Ir(φj) in the limit
of a large number of training samples if our neural net-
work has sufficient capacity to exactly capture Iinr (φj).
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To see this note that

E
[(
Rr(φj ; τr)− Îr(φj)

)2∣∣∣∣φj
]

=

(Rr(φj ; τr)− Ir(φj))2 + E
[(
Ir(φj)− Îr(φj)

)2∣∣∣∣φj
]

where the second term does not depend on τr and the
first is minimized when Raj (φj ; τaj )=Iaj (φj) for all φj .

Once trained, we can run inference on the approximate,
unnormalized, target:

γ̂(x1:nx) =

nx∏

i=1,ai /∈SR

fai(xi;φi)

ny∏

k=1,bk

gbk(yk;φk)

nx∏

j=1,aj∈SR

γinaj (xj |φj)
Raj (φj ; τ)

.

(9)

It is important to note that this method never actually
requires us to directly evaluate γinaj (xj |φj), instead we
introduce the variables z that implicitly produce the
correct pushforward distribution on the x’s. In essence
we are actually defining a higher dimensional auxiliary
variable problem that has the desired pushforward on
the variables of interest.

3.2.1 An Adjusted Approach for Nested
Rejection Samplers

In the case where a NSSP is given by a rejection sam-
pler, then it is preferable to slightly adjust the pro-
cedure for Method 2 to utilize the ability of rejection
samplers to unbiasedly estimate 1/I(φ).

Here we have I(φ) = E[I(A(z, φ))] where A(z, φ) rep-
resents the rejection criterion, returning true if the
sample is to be accepted, and the expectation is with
respect to running a single iteration of the rejection
sampling loop. The naive Monte Carlo estimate

I(φ) ≈ 1

N

N∑

n=1

I(A(zn, φ) = 1), (10)

is only unbiased, if N is independent of the zn, which
is not the case for a standard rejection sampler.

Typically, one would like to instead run the rejection
sampler in the standard manner: running the sampler
until a sample is accepted, at which point we have
generated Na samples. Here Na is not independent of
the zn, such that the naive estimator in (10) is now
biased. However, instead fixing N upfront can return
an estimate Î(φ) = 0 which will in turn can cause the
estimate of the normalized density to become infinite,
thereby triggering a failure in the overall inference.

This conundrum can be circumvented by instead trying
to directly estimate 1/I(φ) and use this as the basis for

the regressor. This is possible because rejection sam-
plers have the property E[Na|φ] = 1/I(φ) as follows:

E[Na|φ] = E

[
Na∑

n=1

1

∣∣∣∣∣φ
]

= E

[ ∞∑

n=1

I(Na ≥ n)

∣∣∣∣∣φ
]

=

∞∑

n=1

E [I(Na ≥ n)|φ] =

∞∑

n=0

(1− I(φ))n =
1

I(φ)
.

Therefore, in this setting we learn our regressor Raj to
go from φj to 1/I(φ), exploiting the fact that Na is an
unbiased estimate of the latter, and subsequently use

P inaj (xj |φj) ≈ γinaj (xj |φj)Raj (φj ; τaj ) (11)

to construct the approximate objective.

It is interesting to further note that

E[γinaj (xj |φj)Na|xj , φj ] = P inaj (xj |φj) (12)

such that it should in principle also be possible to use
this result to develop pseudo-marginal samplers.

4 Experiments

To confirm their ability to provide accurate and efficient
inference, we now test our methods on an artificial
model where we can easily calculate the ground truth,
introduce NSSPs of both types, and adjust the difficulty
of the problem by varying its dimensionality. Though
simple, we will see that this model is beyond what
can be tackled by previous approaches (assuming we
do not exploit the analytic solutions). We emphasize
here that because existing approaches for dealing with
NSSPs are so limited, the only viable way of accurately
asserting the performance of approaches is to manually
construct a problem to permit analytic simplifications
to allow ground truth calculations; hence the artificial
nature of these experiments. Further experiments are
given in the supplement.

To be more specific, our model comprises of a multi-
variate Gaussian unknown mean problem, but with a
twist as we write the model using NSSPs. This model
is chosen for two reasons. First, via conjugacy relation-
ships we can analytically calculate the posterior mean
of the outer program. Second, it allows us to easily
replace individual variables in the problem with NSSPs
of either type Case A or Case B (or both) without
changing the ground truth posterior.

4.1 Model Definition

Let x ∼ N (µ,Σ), x ∈ Rnx . We set µ to a fixed
value, randomly generated upfront. Σ is also randomly
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Figure 1: Convergence of the MSE for posterior mean calculated across all latent dimensions, for different problem
dimensionalities for the Nested Gaussian model Case A. Shown is importance sampling from the prior (magenta)
and our surrogate method (i.e., Method 1, green). The 25%-75% quantiles are shown as shaded regions, formed
using 100 independently run chains of 106 samples per chain (after burn-in). We see that our method produces
significantly lower error than the baseline, particularly as the dimensionality increases.

generated, but in a particular manner that ensures that
the following depending structure holds

p(x1:nx
) = p(x1)p(x2|x1) . . . p(xnx

|xnx−1).

Details on how this is done are given in the supplement.
Given this induced dependency structure, the forward
call of the simulator can be written out as

p(x1) = fa1(x1|φ1) = N (x1;µ1,Σ1,1)

p(xi|xi−1) = fai(xi|φi)
= N (xi;µi|i−1(xi−1),Σi|i−1(xi−1)),

where µi|i−1(xi−1) and Σi|i−1(xi−1) are conditional
means and covariances calculated using standard Gaus-
sian identities (Petersen and Pedersen, 2012). Finally,
we introduce a single Gaussian distributed observa-
tion y ∈ Rnx of the form gb1(y|x1:nx

) = N (y;x1:nx
, I),

where I is an identity matrix.

To induce nested structures into this model, for each
of even addresses we replace fai(xi|φi) with an NSSPs
(i.e., if i is even then ai ∈ Sr, else, ai /∈ Sr). These
NSSPs implicitly define the same density, but we either
only provide a black–box sampler (Case A), or in an
input–dependent unnormalized form (Case B).

For the former case, we simply make an external
call to a function that returns samples according to
N (xi;µi|i−1(xi−1),Σi|i−1(xi−1)), but for which we can-
not directly evaluate the density. For the latter case,
we define a set of nested probabilistic programs

def NSSP_i(φi = xi−1)

z ∼ N (µi,Σi,i)

µi−1|i = µi−1 + (z − µi)Σ2
i−1,i/Σi,i

Σi−1|i = Σi−1,i−1 − Σ2
i−1,i/Σi,i

factor(N (φi;µi−1|i,Σi−1|i))

return z

where factor represents a factoring of the den-
sity, i.e. this is a likelihood term of density
N (φi;µi−1|i,Σi−1|i). Drawing from this NSSP requires
us to run separate inference procedures, because the
nested model involves a local normalization (Rainforth,
2018). We can consider the nested sub-procedure in
isolation and its inputs as fixed variables when calcu-
lating the form of its local posterior, but this posterior
must be estimated separately for each possible instance
of the inputs. Critically, we can also estimate the
marginal likelihood of this nested program for input φi
by drawing samples of z and then taking the average
of the likelihood evaluations (i.e. the average of the
exponential of the factor statements). This thus lets
us carry out Method 2.

4.2 Evaluation

We now consider running Method 1 on the Case A
variation of our model and Method 2 on the Case
B variation. Note that Method 2 cannot be run for
problems that are only of type Case A, while Method 1
will generally be inferior to Method 2 when the latter
can be run (such that we do not generally recommend
doing this) because it requires us to regress from the
inputs to a full distribution, rather than just the scalar
normalizing constant.2 All the same, results for running
Method 1 on Case B are given in the supplement. We
note that for both methods the real time spent training
the approximations was comparable to that for running
the subsequent MCMC sampling.

Recall that in the training phase of Method 1 we require
only the input–output pairs from the NSSPs; these can

2A potential exception to this is if the individual NSSPs
contain a large number of internal random variables z (Sec-
tion 3.2), as here the final MCMC sampling for Method 2
is on a much higher dimensional space than for Method 1.
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Figure 2: Convergence of the MSE for posterior mean calculated across all latent dimensions, for different problem
dimensionalities for the Nested Gaussian model Case B. Shown is an online nested importance sampling estimate
(blue) and our normalization approximation method (i.e., Method 2, red). Conventions as per Fig. 1.

all be directly generated by forward simulation. This
can also be straightforwardly batched so training is ef-
ficient. Once trained we run Metropolis-Hastings (MH)
over the whole simulator with the NSSPs replaced by
their approximations. Full details of the NN architec-
tures and training procedure are provided in Appendix
B. We compare to a baseline of importance sampling
from the prior as described in Section 2.2, noting that
neither particle methods nor ABC approaches are help-
ful in this setting; despite the crudeness of approach,
we are not aware of any stronger baselines in the litera-
ture because of the unusual nature of the problem. The
results are given in Figure 1, where we use our ground
truth for the posterior mean of x (see Appendix C)
to calculate a mean squared error (MSE) for variants
of the model with different dimensionality. We use a
burn in period of 104 MCMC samples (not included
in the plot). We see that our approach significantly
outperforms the baseline, while this improvement be-
comes more noticeable as the dimensionality increases.
In fact, by the time nx = 60, the baseline effectively
fails to generate any good samples of note, while our
approach maintains its performance.

Training of Method 2, on the other hand, requires each
NSSP to return both marginal likelihood estimate for
training its regressor, and an approximate sample of its
posterior so that the forward sampling of the program
can continue. For the former, we draw a number of
samples the NSSP’s local prior (i.e. numerous z) and
return the average likelihood evaluations resulting from
the factor statements, giving an unbiased estimate of
the marginal likelihood. We then draw one of these
samples in proportion to its “weight” (i.e. its likelihood
evaluation) as the returned sample, in a manner akin to
self-normalized importance sampling with resampling.
We note here that these returned samples do not need
to be exact posterior samples for effective training (and
indeed they are not): we are only doing this sampling
to generate example inputs for training the regressors

of later NSSPs. Again estimation steps can be batched,
so training is efficient. Full training details are again
provided in Appendix B.2.

Figure 2 shows the results for this case, where we now
instead compare to the online nested importance sam-
pling (ONMC) approach of Rainforth (2018), noting
that, to the best of our knowledge, nesting impor-
tance sampling approaches (or slight variations therein,
e.g. Naderiparizi et al. (2019)) are the only general–
purpose consistent estimators for this class of problems
currently present in the literature. We again see that
our approach provides substantial improvements, with
these again becoming more pronounced as the dimen-
sionality increases.

It is noticeable that both our methods converge to bi-
ased solutions as we increase the number of samples at
inference time. However, this is to be expected as they
are based on approximating the density of the NSSP.
Critically though, this error can be reduced by per-
forming more training of the approximation networks,
increasing their capacity, or using more accurate esti-
mates in the training procedure (e.g. more importance
samples for each NSSP when training Method 2). The
key is that the methods are providing effective esti-
mates, even for the higher dimensional problems where
the baselines break down completely.

5 Conclusions and Future Work

We have introduced two approaches for performing
effective inference in simulators containing nested
stochastic sub-procedures (NSSPs). These are both
based on first separately approximating each individual
NSSP—either using an amortized inference surrogate
on its outputs or a combination of the original pro-
gram and a regressed approximation of its marginal
likelihood from its inputs—and then using these ap-
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proximations to form an approximation for the overall
program that can be used as a target for scalable infer-
ence algorithms like MCMC and variational inference.
We have shown that this provides substantial gains
over existing baselines on a synthetic model where we
can analytically derive the ground truth. In particu-
lar, our approaches have allowed us to tackle problems
of a much higher dimension that those which can be
efficiently tackled by existing approaches.

Our work provides a promising pathway to perform
statistically principled and computationally efficient
inference in large scale simulators. Indeed there are
a host of current simulator-based inference problems
currently actively being researched in the literature
where the bottleneck is the restrictions that NSSPs
impose on our ability to run inference (Baydin et al.,
2019a; Gram-Hansen et al., 2019). We hope that this
work will substantially increase the viability of such
ventures, thereby leading to a large number of down-
stream applications.
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A Locating Addresses in Simulators

Running the introduced inference approaches requires
one to identify calls in the simulator corresponding to
NSSPs. Often this can be done manually as these will
be known ahead of time. However, in certain cases,
particularly for large scale simulators or probabilistic
programs containing rejection sampling loops, it may
not actually be trivial to manually identify and then
replace these NSSPs in the code to allow our approach
to be used.

Thankfully, there has been substantial recent progress
on how this can be done in the literature through the
concept of hijacking a simulator. Namely, recent work
by Gram-Hansen et al. (2019); Baydin et al. (2019a)
described a hijacking process that takes an arbitrary
stochastic simulator, defines a joint density, and hijacks
the underlying random primitives of that simulator by
passing their control to a probabilistic programming
system (PPS). This backend PPS can then both manip-
ulate the running of this simulator by overwriting calls
to the random primitives and also track the control
flows of the simulator to identify rejection sampling
loops and other NSSPs. Thus, in turn, these methods
should, at least in principle, be able to automate the
running of our inference approaches.

Viewed from another perspective, these hijacking based
PPS approaches are often used to tackle problems of
the same class as our work, but at present their backend
inference engines rely on simple importance sampling
procedures. As such, they are not sufficiently pow-
erful to satisfactorily perform inference in the types
of simulators they are designed to target, such as the
OpenMalaria simulator (Smith et al., 2008) and the
prominent Covid-19 simulator of Ferguson et al. (2006).
The techniques developed in this paper provide a path-
way to running inference in models like this where this
was previously completely infeasible, due to their abil-
ity to scale gracefully with the dimensionality of the
model, while existing approaches scale exponentially
poorly and quickly become redundant.

B Further Experiments and
Experimental Details

B.1 Method 1 for Case B Problems

Method 2 (i.e. regressing the marginal likelihood) is
typically preferable when all our NSSPs conform to
Case B but not Case A (i.e. we have access to their
unnormalized densities, but cannot generate samples
directly). This is because a) it is simpler to regress
to a one dimensional marginal likelihood that a set of
variational parameters that approximate the output

distribution, and b) it does not introduce additional
approximations from running inference on the individ-
ual NSSPs during training (as our marginal likelihood
estimates will generally be unbiased, even if they are
high variance). However, this is not universally the
case: Method 1 (i.e. learning an amortized surrogate
density) can still sometimes be preferable in Case B
scenarios, particular if in the individual NSSPs are high–
dimensional themselves. This is because a) the final
MCMC inference is lower dimensional because it does
not include the internal random draws of the NSSPs,
and b) sometimes producing approximate posterior
samples from a Case B NSSP is easier than produc-
ing a reasonable marginal likelihood estimate (e.g. if
the NSSP is internally high–dimensional it might be
feasible to generate good approximate output samples
by MCMC, but not low–variance marginal likelihood
estimates through importance sampling).

In this section, we consider running Method 2 for
NSSPs which are only of type Case B. For this, we
use exactly the same Nested Gaussian model as the
one described in Section 4. We assume that the model
is specified using the nested probabilistic programs
NSSP_i, but that we cannot draw samples directly
from them. It is still possible to apply Method 1 here
by treating the problem as a nested inference. That
is, whenever we encounter a NSSP during training, we
run a local inference to generate the required (approx-
imate) output samples associated with the provided
input, that is approximate samples from the posterior
distribution of NSSP_i(φi) given input φi. Sampling
from the posterior of each NSSP constitutes an sepa-
rate, one-dimensional, non-nested inference problem,
and we will need to run inference on each NSSP we
encounter in the forward run of the simulator in the
process of generating the samples for training of our
conditional density estimators.

Among many inference methods we could use to solve
such an inference problem, we decide to use Metropolis-
Hastings. The details of the training procedure are
given in Appendix B.2, and are analogous to both
Method 1 for Case A and Method 2 for Case B experi-
ments in the main paper in all aspects they share.

In Figure 3 we compare to the same ONMC baseline
considered in the main paper. We see that the perfor-
mance is similar to when we used Method 2, but with
slightly higher final errors.

B.2 Training details for the Nested Gaussian

In this section we give the details of the training
schemes used. We first give the details common for all
the models we trained, and then describe model-specific
details for individual models in subsections.
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Figure 3: Convergence of the MSE for posterior mean calculated across all latent dimensions, for different
problem dimensionalities for the Nested Gaussian model Case B. Shown is nested importance sampling (blue)
and the surrogate method (i.e., Method 1 for Case B, yellow). The 25%-75% quantiles, shaded regions, are over
100 independently run chains of 106 samples per chain. As expected, we see that both our approach produces
significantly lower error that the baseline as the dimensionality increases.

All the neural networks used for determining the param-
eters of the conditional density estimator for Method 1
(i.e., mapping from the value of φi to the parameters
of the parametric density estimator approximating the
posterior distribution of the NSSP) and regressing the
marginal likelihood of the NSSP for Method 2 (i.e.,
mapping from the value of φi to the approximation of
the marginal likelihood of the NSSP) were MLPs with
64 hidden units per layer and 4 hidden layers.

We trained a separate density estimator (Method 1)
or regressor (Method 2) for each instance of the NSSP
which means that we trained 2, 10, 30 separate neural
networks for d = 4, 20, 60, respectively.

We trained for 104 gradient updates, each with newly
generated batch of data from the forward run of the
program. Each batch had 103 examples. The initial
learning rate for all experiments was 10−3. We used
ReduceLROnPlateau learning rate scheduler with pa-
tience of 103 and decrease factor of 0.29.

Final inference on the program with the probability
density of the NSSPs approximated using the learned
components (for both Method 1 and Method 2) were
run using Metropolis-Hastings with isotropic Gaussian
proposal, with proposal standard deviations 1.0, 0.4, 0.2
for d = 4, 20, 60, respectively. The MCMC chains were
initiated at a vector of all zeros and used 104 samples
for burn in (not included in plots).

B.2.1 Method 1 for Case A

The distribution family used for amortized surrogates
was taken to just be a one dimensional Gaussian,
N (m(φ), s(φ)), where m and s are MLPs as described
earlier that take in the NSSP input φ and return a
mean and standard deviation respectively. As such,

this approximation family is able to encapsulate the
true NSSP conditional distributions exactly if suffi-
ciently accurate MLPs can be learned. Training these
conditional density estimators was done as explained
in the main paper.

B.2.2 Method 2 for Case B

We obtain a Monte Carlo estimate of the marginal
likelihood for each instance of the NSSP by taking 104

samples of z in the NSSP_i(φ) and forming an average
over the evaluations of the likelihood (given by the
exponentiation of the factor(·) statement). This esti-
mation is trivially vectorized on a GPU, which means
that taking this relatively large number of samples in
the estimate is only nominally slower than it would
be to only use a single sample. As such, the training
phase of Method 2 is generally much quicker than one
might expect.

B.2.3 Method 1 for Case B

The conditional density estimators used were the same
as per Section B.2.1. As described in Section B.1, in
this setting we run separate MCMC inference on each
instance of the NSSP. We ran a separate chain for
each element in the training batch. We ran Metropolis-
Hastings with an isotropic Gaussian proposal, with
proposal standard deviation of 3.0 which yielded an
average acceptance rate around 44%. The chains were
initialized by using the conditional density estimator.
Each chain was run for 25 samples, with only the last
sample presented to the density estimator as a training
sample.
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C Derivation of the Ground Truth

We now derive the ground truth posterior for the Gaus-
sian model used in the main paper. The key here is to
reverse engineer the prior covariance, Σ, in such a way
that the following Markov dependency structure will
hold

p(x1:nx
) = p(x1)p(x2|x1) . . . p(xnx

|xnx−1).

This then allows us to replace any arbitrary p(xi|xi−1)
with an NSSP for the form given in the main paper (or
equivalently a direct sampler) without requiring any
information from the < i− 1 indices.

To show how this can be done, let us start by noting
the standard results for the marginals of an arbitrary
Gaussian (Petersen and Pedersen, 2012). Namely, if
x ∼ N (µ,Σ) and

x =

[
xa
xb

]
, µ =

[
µa
µb

]
, Σ =

[
Σa Σc

ΣT
c Σb

]
,

then xb|xa ∼ N (µb|a,Σb|a), where

µb|a = µb + ΣT
c Σ−1a (xa − µa)

Σb|a = Σb −ΣT
c Σ−1a Σc.

Now taking xb = xi and xa = x1:i−1, we thus have
xi|x1:i−1 ∼ N (µi|1:i−1,Σi|1:i−1) where

µi|1:i−1 = µi + ΣT
1:i−1,iΣ

−1
1:i−1,1:i−1(x1:i−1 − µ1:i−1)

Σi|1:i−1 = Σi,i −ΣT
1:i−1,iΣ

−1
1:i−1,1:i−1Σ1:i−1,i.

For our induced dependency structure to hold, we
require µi|1:i−1 = µi|i−1 and Σi|1:i−1 = Σi|i−1, where
µi|i−1 and Σi|i−1 are derived by instead taking xa =
xi−1 to yield

µi|i−1 = µi + (xi−1 − µi−1)Σi−1,i/Σi−1,i−1

Σi|i−1 = Σi,i −Σ2
i−1,i/Σi−1,i−1.

We thus need the following equations to hold for all
x1:i−2

ΣT
1:i−1,iΣ

−1
1:i−1,1:i−1(x1:i−1 − µ1:i−1)

= (xi−1 − µi−1)Σi−1,i/Σi−1,i−1
(13)

ΣT
1:i−1,iΣ

−1
1:i−1,1:i−1Σ1:i−1,i = Σ2

i−1,i/Σi−1,i−1. (14)

Considering the first of these, we see that we must have

ΣT
1:i−1,iΣ

−1
1:i−1,1:i−1 =

[
0,

Σi−1,i
Σi−1,i−1

]
,

noting that the 0 term originates from the fact that
changing x1:i−2 must not lead to changes in the left–
hand side of (13). Rearranging gives

ΣT
1:i−1,i =

[
0,

Σi−1,i
Σi−1,i−1

]
Σ1:i−1,1:i−1 (15)

such that we can construct ΣT
1:i−1,i from Σ1:i−1,1:i−1

and Σi−1,i using a matrix multiplication. Simple sub-
stitution into the left–hand size of (14) shows that this
also provides a solution to our second required equality
as well. Thus any Σ that satisfies (15) for all i will pro-
duce our desired dependency relationship and further
ensure that the NSSP used in the main paper defines
the desired target density.

We can construct such a Σ by the following process:

Algorithm 1 Generate Σ

1: Generate Σ1,1

2: for i = 2 to nx do
3: Generate Σi,i and Σi−1,i

4: Σi,1:i−1 ←
[
0,

Σi−1,i

Σi−1,i−1

]
Σ1:i−1,1:i−1

5: Σ1:i−1,i ← ΣT
i,1:i−1

6: end for

Note that the reassignments do not change the values of
Σi−1,i as there is a canceling that ensures this remains
the same. Here the Σi,i can be generated in completely
arbitrary manner—provided they are positive (e.g. we
could sample them from a gamma distribution)—but
the generation of Σi−1,i must be done carefully to
ensure that the covariance matrix remains positive–
definite. This is achieved by ensuring that Σ2

i−1,i <
Σi,iΣi−1,i−1 so that all the conditional covariances are
positive.

We generated Σi,i and Σi−1,i as following: εi ∼
Uniform[0, 1], Σi,i ← 1 + εi, and ri ∼ Uniform[0, 0.7],
Σi−1,i ← ri ·Σi−1,i−1, while the mean µ of our joint
distribution was generated from a standard multivari-
ate normal µ ∼ N (0, I). This generation process is
performed only once for each dimensionality of the
problem nx = 4, 20, 60, and then those 3 matrices Σ
are reused for all of our experiments.

To finish our derivation of the ground truth we now sim-
ply need to incorporate our likelihood term p(y|x) =
N (y;x,Σy) (where we take Σy = I in practice). This
is just a standard Gaussian unknown mean problem,
yielding x|y ∼ N (x;µx|y,Σx|y) where (Murphy, 2012)

µx|y = (Σ−1 + Σ−1y )−1
(
Σ−1µ+ Σ−1y y

)
(16)

Σx|y =
(
Σ−1 + Σ−1y

)−1
. (17)
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7
Conclusions

To recap, in this thesis we have presented three pieces of original work, through four papers, with

the common theme being enhancing existing probabilistic programming systems by expanding the

class of probabilistic models that a given probabilistic programming system can handle with the

use of compilation schemes, coroutines and new inference algorithms, with a focus on real-world

simulators and probabilistic models that had mixtures of continuous and discontinuous variables.

In these concluding remarks, we will summarise our contributions and suggest directions for

future work. The first work presented in this thesis was Chapter 4, where we developed a

series of compilation rules to enable the extension of non-differentiable, first-order probabilistic

models, to differentiable first-order probabilistic programming systems. By developing these

compilation rules and the low-level FOPPL, we enabled the generation of a compilation target

that could be leveraged by existing first-order differentiable systems, without them having to

redesign the underlying language or create an entirely new probabilistic programming system, to

perform inference in probabilistic models with mixtures of continuous and discontinuous variables

utilising statistically correct and computationally efficient inference algorithms, provided the

discontinuities generated are measure zero. A unique feature of our low-level PPL, and a key

feature of the compilation scheme, was its ability to detect discontinuities caused by latent

variables in conditional statements, that are typically missed in existing systems. The

ability to track variables in this way, provides a path to performing inference efficiently in

what if? probabilistic models, where we want to understand causal relationships, which arise

in many healthcare related scenarios.

In Chapter 5 we developed a collection of coroutines called the Probabilistic Programming

eXecution (PPX) protocols that enable the compilation of real-world stochastic simulators written

in arbitrary program languages to probabilistic programming systems by making small incisions

in the underlying code base. This work, as we demonstrated in [Baydin et al., 2019a], Paper
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one in Chapter 5, and in [Gram-Hansen et al., 2019a] and [de Witt et al., 2020], showed that it

is possible to turn pre-existing, large scale, model-rich, real-world simulators into probabilistic

programs, without having to rewrite the simulator in a probabilistic programming system, giving

simulators added utility by enabling them to leverage inference algorithms, without having to

spend additional time or financial resources on reimplementing a probabilistic model that requires

highly specialised knowledge to implement. Furthermore, in [Baydin et al., 2019b], Paper

two in Chapter 5, we showed that once a given simulator is converted we can utilise the PPX

protocols and scale the inference procedure over twenty-five thousand latent variables, showing

that probabilistic programming can be efficiently applied to real-world simulators and at scale in

HPC settings. This work, although in its infancy, presents lots of exciting future opportunities,

such as automating the recalibration of existing simulators, without having to do this procedure

manually. Moreover, building probabilistic models is subjective and time-consuming, so leverage

existing stochastic simulators and converting them into probabilistic programs enables us to think

of new ways to combine existing models. This could be, for example, conditioning on the field

observations of the number of infections from the malaria vector in a given demographic, on

the output of the OpenMalaria intervention simulations [Smith et al., 2008] and also feeding

information from climatic data, or a weather simulator [Held, 2005], as climatic factors play a

crucial role in how the malaria vector spreads [Cameron et al., 2015]. By doing this, we could

allow for near-real time updates for how a malaria vector may move through a given demographic,

enabling health practitioners to be preemptive, rather than reactive. The PPX protocols help as

the OpenMalaria is a stochastic simulator, but, in its current form not amenable to inference

on external observations and so one cannot calibrate the latent variables in the simulator for

climatic factors and new field observations in an automated way, which is problematic from a

time and complexity perspective, as the code base is very large and this procedure has to be

done manually, taking weeks and months. However, we would be remissed for not discussing

the challenges of implementing such a system. Even though the PPX protocols allow for this

conversion, you still have to make modifications to the simulator source-code, and this may not

be trivial to do in all simulators. Also, gradient based inference schemes cannot be currently used

with the PPX protocols as there is no way to pass gradient information through the simulators.

Finally, simulators, such as the OpenMalaria simulator [Smith et al., 2008], contain internal,
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nested inference procedures, which are not directly amenable to MCMC inference and led to

the new inference schemes presented in Chapter 6.

Finally, we saw in Chapter 6 that drawing inferences from nested probabilistic models poses a

substantial challenge due to the inability to evaluate even their unnormalised density, preventing

the use of many standard inference procedures like MCMC. To work around this challenge we

developed two approaches for conducting efficient Bayesian inference in nested probabilistic

models, where internal nested inference procedures inhibit out ability to calculate the log density.

The inference algorithms introduced are based on a two-step approach that first approximates

the conditional densities of the individual sub-procedures, before using these approximations to

run MCMC methods on the full program. By developing these methods we can utilise scalable

MCMC methods as we can construct an approximate representation of the log density, in method

1, and in method 2 we can exactly construct the log density, we can then leverage this log density

for inference. Because the sub-procedures can be dealt with separately and are lower-dimensional

than that of the overall problem, this two-step process allows them to be isolated and thus be

tractably dealt with, without placing restrictions on the overall dimensionality of the problem.

However, implementing these inference procedures in a probabilistic programming system to

enable inference in an arbitrary stochastic simulator that is not written directly in the probabilistic

programming system is challenging from an engineering perspective. The main difficulty is not

in locating the nested sub-procedures, but being able to detect them automatically and pass all

input and output data from that nested procedure to our probabilistic programming system for

inference for the given nested sub-procedures. The PPX protocols give us the ability to extract

the inputs and outputs from any procedure in the simulator, but it does not allow, yet, for the

automatic detection of nested-procedures. If the simulator was written directly in a probabilistic

programming system, the task at hand would be straight forward, since you have direct access

to all the source code and stochastic primitives. To do this for an arbitrary simulator is future

work as it requires the development of new coroutines.

7.1 Future challenges
A fundamental challenge to inference in both FOPPLs and UPPLs lies in the behavior when the

program encounters control flow statements. As programmers, we are used to writing conditional

statements of the form if A, else B and when a program is run, only one branch is executed,

when these branches are initiated via stochastic choices, evaluating just one branch is insufficient.
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In the case when the expressions e take a restricted form we can utilise efficient inference

algorithms, Chapter 4, but doing this in a UPPL where you could have nested functions as

an expression within the conditional is challenging. Work by Le et al. [2020] has focused on

performing inference in probabilistic models with stochastic control-flow in UPPLs using the

re-weighted wake-sleep algorithm [Hinton et al., 1995], but this work fundamentally relies on

importance sampling which does not scale as the dimensionality of the problem increases.

Beyond challenges for specific inference algorithms, there are meta-challenges for imple-

menting inference in universal languages since the program is not compiled into the familiar

graphical model representation, as it is for FOPPLs, thus, it is an open question what underlying

representation or abstraction is appropriate for our probabilistic models. The PPX protocols

developed in Chapter 5 go some way to addressing this, but, code bases are messy and so there

will always be challenges in transforming arbitrary stochastic simulators into the probabilistic

programming paradigm and it will be difficult to resolve these issues without manual intervention.

The optimal strategy is to write the simulator directly in a probabilistic programming system,

which, in many instances is inefficient if the simulator consists of tens-of-thousands to millions-

of-lines of code. However, even if we do this, developing inference procedures that are efficient,

scalable to both high-dimensional data and latent spaces, while being automatable for all

probabilistic models is still on-going research.
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Appendix

A.1 The manual coin-flip
We are going to start on the assumption that we have a non-informative prior, that is the probability

that the outcome of a coin-flip is biased follows a uniform distribution on the interval [0,1], thus

the form of the prior is p(x = H) = U(0, 1) and we sample from this prior during each

forward execution of the model, x ∼ U(0, 1). We choose this prior because we suspect

the coin may be bias; however, we are uncertain in which direction it is bias, as we ran an

additional one-hundred flips and the majority of coin-flip outcomes were tails. If we believe

that the coin prefers one outcome more than another, we can incorporate that belief with a

prior that follows a beta distribution.

Once we have chosen our prior we construct the likelihood of our model. For the biased

coin, we have a natural distribution that describes our problem set-up, the binomial distribution

Bin(n,x). The Binomial distribution is a discrete distribution that enables us to derive the

probability of determining N successes, in this case, the number of heads, n = nh, from

N = nh + nt independent runs of our model, flipping the coin, where the result of each forward

run is either H , with probability p(x = H) = x, or T with probability p(¬x) = 1− p(x = H).

Thus, the model has the following form

x ∼ U(0, 1) (A.1)

p(nh|x, N) =
(
N

nh

)
xnh(1− x)N−nh (A.2)

Utilising Bayes’ theorem we construct the form of the posterior:

p(x|nh, nt) = p(nh|x, N)p(x)
p(nh) =

∫ 1
0 p(nh|x, N)p(x)dx

(A.3)
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However, in order to calculate the marginal, p(nh), we have to do some work. We utilise

induction and integration by parts, and start with the following observation when nh = 0:

∫ 1

0
(1− x)Ndx = 1

N + 1 = 0!(N − 0)!
(N + 1)! (A.4)

assuming the formula holds for some nh, we find that integrating by parts yields:

∫ 1

0
xnh+1(1− x)N−(nh+1)dx = −xnh+1(1− x)N−nh

N − nh
+
∫ 1

0

(nt + 1)xnh(1− x)N−nh

N − nh
dx

(A.5)

= (nh + 1)
(N − nh)

∫ 1

0
xnh(1− x)N−nhdx (A.6)

By performing this procedure recursively we arrive at:

∫ 1

0
xnh+1(1− x)N−(nh+1)dx = (nh + 1)(nh)!(N − nt)

(N − nh)(N + 1)! (A.7)

= (nh + 1)!(N − (nh + 1))
(N + 1)! = Beta(nh + 1, nt + 1) (A.8)

which is the Beta function, where nt = N − nh.

Once we have acquired our normalisation factor, the marginal, we can construct the posterior

density as we know the from of the likelihood, p(y|x), and prior, p(x):

p(x|nh, nt) = 1
Beta(nh + 1, nt + 1)xnh(1− x)N−nh (A.9)

From the posterior we can then calculate the moments, in particular, we are interested in the

first moment under the distribution p(x|nh, nt), Ep(x|nh,nt) [x] =
∫

xp(x|nh, nt)dx, the expected

probability that we observe heads from the flip of a coin.

E[x] =
∫ 1

0
x

1
Beta(nh + 1, nt + 1)xnh(1− x)N−nhdx (A.10)

In this instance we can calculate this expectation analytically by expanding the polynomials

and using integration by parts, once we define the number of observed heads, nh. In Figure A.1,

we see how the uncertainty in our beliefs changes as we observe a differing numbers of heads.

Initially, after N = 10 runs, we believe the coin is unbiased, but we are still uncertain in the

range of values x can take, with the expected value being E[x] = 1
2 , a fair coin. As we run

more experiments we become more certain in our prediction, as the variance of the posteriors

reduces and the density begins to peak around a set of points. Indeed, by the time we have run
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N = 1000 experiments our beliefs inform us that the coin is bias, and we are more certain about

how bias the coin is, that is we expect to get a head E[x] = 2
3 of the time. So we infer that the

coin is biased, and because we have a posterior distribution we can see how confident we are

in that belief. This is a not only a nice feature of Bayesian inference, but important for many

real-world applications that care about the robustness of a prediction.

0.0 0.2 0.4 0.6 0.8 1.0
0
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 The posterior distributions of the biased coin
N = 10, nh = 5

0 = 0.50
N = 100, nh = 87

1 = 0.86
N = 1000, nh = 670

2 = 0.67

Figure A.1: As we generate more observations our posterior beliefs are updated. Here we plot the
posteriors for a number of different runs of the experiment, N = 10, 100, 1000 and a varying number of
observations during each experiment, nh = 5, 87, 670.
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