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Simulations in Global Health

Machine learning (ML) has a growing role global
health, enabling improvements in health service access
and efficiency.

Design and implementation of public health
interventions are assisted by epidemiological modeling
through computer simulation.

Multi-modal intervention portfolios for endemic
diseases have been studied, for example in malaria.

COVID-19 poses similar challenges in the context of a
pandemic, for example modeling social distancing
measures.

Can we use novel ML methods from
simulation-based inference and control to push
existing boundaries?

Modelling Challenges

Stochastic individual-based models are significantly
more complex than traditional compartmental models.
This leads to new challenges with respect to:

e Model calibration
The extent to which a simulator can reliably inform
real-world prediction and planning is bounded by both
model discrepancy and how well the model has been
calibrated to empirical data.

Optimising decision-making

Identifying optimal multimodal intervention strategies
and corresponding risks and uncertainties requires
searching through potentially vast parameter spaces,
which, due to the computational cost of running large
simulators (e.g., in some epidemiological studies),
usually cannot be exhaustively evaluated.
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CovidSim: A Case Study
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Latent probabilistic structure uncovered using PyProb* probabilistic programming library from an Imperial College London CovidSim simulatort run on Malta, demonstrating the first step in
working with this simulator as a probabilistic program. Uniform distributions are omitted for simplicity. *https://github.com/pyprob/pyprob thttps:/github.com/mrc-ide/covid-sim/

Simulation-Based Inference and Control

Recent advances in machine learning have led to a new family of promising
approaches to simulation-based inference (SBI).

Probabilistic programming allows one to express probability models using
computer code and perform statistical inference over the inputs and latent
variables of the program, conditioned on data observations (or constraints).

This is achieved by using special-purpose probabilistic programming languages
(PPLs), which augment a host language with features to express probabilities and
Bayesian conditioning.

Recent work made it possible to use pre-existing stochastic simulators as
probabilistic programs, with minimal code modification to capture and redirect
random number draws scaling up to very large simulators, and particularly

relevant to this work, with application to individual-based epidemiology simulators.

Probabilistic Programming Probabilistic Programming
with Monte Carlo sampling with Inference Compilation
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Figures by Cranmer et al. 2020

Traditional Approaches

Inference in individual-based
simulators is usually doubly
intractable, as both simulator
likelihood and evidence cannot be
evaluated efficiently.
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Conclusions and Outlook

SBI can benefit from a new set of tools: automated
amortization by surrogate methods; source-to-source
transformations to make existing simulators
differentiable, enabling efficient gradient-based
optimisation and inference (e.g., HMC); standardized
inference interfaces to facilitate use by non-SBI experts.

We expect the mentioned techniques to play a role in
dealing with communicable and non-communicable
diseases, which pose a significant burden for health
systems worldwide.
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