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Abstract
The COVID-19 pandemic has highlighted the impor-
tance of in-silico epidemiological modelling in pre-
dicting the dynamics of infectious diseases to inform
health policy and decision makers about suitable pre-
vention and containment strategies. Work in this set-
ting involves solving challenging inference and control
problems in individual-based models of ever increas-
ing complexity. Here we discuss recent breakthroughs
in machine learning, specifically in simulation-based
inference, and explore its potential as a novel venue
for model calibration to support the design and evalua-
tion of public health interventions. To further stimulate
research, we are developing software interfaces that
turn two cornerstone COVID-19 and malaria epidemi-
ology models (CovidSim1 and OpenMalaria2) into
probabilistic programs, enabling efficient interpretable
Bayesian inference within those simulators.

1 Introduction
Machine learning has a growing role in increasing health
service access and efficiency, particularly in resource-
constrained settings, making it a valuable tool for the global
health community [39, 54]. Moreover, the COVID-19 pan-
demic [55] has underlined the importance of epidemiolog-
ical modelling and computer simulation in informing the
design and implementation of public health interventions at
an unprecedented scale [18]. For many endemic diseases
(e.g., malaria), in-silico optimisation of multi-modal inter-
vention portfolios—from mass vaccination to bed nets—is
well established [47]. Analogous modelling for COVID-19
interventions, including social distancing [20], is mostly
unexplored, yet subject to intense public interest [32].

The adoption of health informatics in worldwide health sys-
tems (e.g., OpenMRS [33], mHealth [1]) enables access to
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abundant patient-level and aggregated health data [54]. This
is fomenting the development of comprehensive modelling
and simulation to support the design of health interventions
and policies, and to guide decision-making in a variety of
health system domains [22, 49]. For example, simulations
have provided valuable insight to deal with public health
problems such as tobacco consumption in New Zealand [50],
and diabetes and obesity in the US [58]. They have been
used to explore policy options such as those in maternal and
antenatal care in Uganda [44], and applied to evaluate health
reform scenarios such as predicting changes in access to
primary care services in Portugal [21]. Their applicability
in informing the design of cancer screening programmes
has been also discussed [42, 23]. Recently, simulations have
informed the response to the COVID-19 outbreak [19].

The process of informing health interventions and policies
through simulations generally involves two steps:

Model calibration The extent to which a simulator can
reliably inform real-world prediction and planning is
bounded by both model discrepancy [13] and how well
the model has been calibrated to empirical data [3].

Optimising decision-making Identifying optimal multi-
modal intervention strategies and corresponding risks and
uncertainties requires searching through potentially vast
parameter spaces, which, due to the computational cost of
running large simulators (e.g., in some epidemiological
studies), usually cannot be exhaustively evaluated [46].

Despite their fundamental importance, model discrepancy
and calibration of public-health simulators are frequently
only informally addressed, or left undocumented [48, 40].
This may be partially explained by the fact that, while numer-
ous methods for formal sensitivity and uncertainty analysis
exist [28], they in general do not scale to complex simula-
tors with more than a few dozen parameters [38]. Similarly,
evidence-based decision-making is usually optimised by
comparing outcomes on a small number of hand-crafted
scenarios and intervention strategies [46].

2 Epidemiology simulations and inference
Among the simplest mathematical epidemiology models are
deterministic compartmental models that partition individu-
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Figure 1: Latent probabilistic structure uncovered using PyProb from the Imperial College CovidSim simulator run on Malta,
demonstrating the first step in working with this simulator as a probabilistic program. Uniform distributions are omitted for simplicity.

als in a population based on different stages of the disease3

[29, 2, 11]. Advances in model construction, computing
power, and novel insights into medical and socio-economic
aspects have since stimulated the introduction of stochastic
individual-based models 4 [41] to public health applications.
These relatively complex and highly-parametrised models
are implemented as simulator software that allow studying
the global effects of self-organization and emergent proper-
ties arising from individual interactions at the local level.

In general, inference in individual-based simulators is usu-
ally doubly intractable, as both simulator likelihood and
evidence cannot be evaluated efficiently. Likelihood-free
methods, including approximate Bayesian computation
(ABC) [9] have been proposed [3, 16], but suffer from
exponential scaling of inference with data dimension, re-
quiring domain experts to define low-dimensional summary
statistics, which ultimately determine quality of inference.

Recent advances in machine learning have led to a new fam-
ily of promising approaches to simulation-based inference
[see 15, for an overview]. In particular, we argue that prob-
abilistic programming [see 53, for an introduction] has a
unique potential to standardise and automate model calibra-
tion and decision-making in individual-based simulators.

Probabilistic programming allows one to express probability
models using computer code and perform statistical infer-
ence over the inputs and latent variables of the program,
conditioned on data observations (or constraints). This is
achieved by using special-purpose probabilistic program-
ming languages (PPLs) [24, 43, 14, 51, 10], which aug-
ment a host language with features to express probabilities
and Bayesian conditioning. PPLs separate model specifica-
tion from inference, allowing flexible selection of appropri-
ate inference engines (e.g., importance sampling (IS) [17],
Markov-chain Monte Carlo (MCMC) [12]).

Recent work made it possible to use pre-existing stochastic
simulators as probabilistic programs, with minimal code
modification to capture and redirect random number draws
[7], scaling up to very large simulators [8], and particularly
relevant to this work, with application to individual-based
epidemiology simulators [26]. Within such a framework,
one could, for instance, condition on desired health out-
comes (e.g., ICU capacity not being exceeded in a pan-

3E.g., susceptible–infectious–recovered or SIR
4Also referred to as agent-based model or multi-agent system.

demic), and derive detailed posterior distributions over all
interactions defined by the simulator [56], providing insights
on interventions effecting a desired outcome—with proper
uncertainty quantification at all stages.

To further enhance the applicability of simulation-based in-
ference in this domain we highlight several opportunities for
further method development. Automated amortisation by
surrogate methods [25, 36, 34], which aim to automatically
identify and replace compute-intensive parts of a simulator
through less expensive emulators, could be guided by the
causal structure inherent to a simulator (Figure 1), such as
many repeated, structurally identical stochastic time steps
or multi-agent interactions that might be amenable to mean-
field approximations [57]. In addition, pre-existing simula-
tors could be turned into differentiable programs [6] through
automated source-to-source transformations, thus allowing
for the use of gradient-based optimisation and inference
methods, including Hamiltonian Monte Carlo [37]. Last
but not least, the unified interface specification afforded by
probabilistic programming could allow simulators to also be-
come amenable to other techniques from simulation-based
inference and control, including dynamic programming and
reinforcement learning [31, 52, 27].

To foster the development of a new standardised approach
to model calibration and evidence-based decision-making in
public health, we are working on instrumenting the existing
CovidSim [19] and OpenMalaria [45] simulators with a
probabilistic programming interface through the PyProb
library.5 We will publicly release our code to provide out-
of-the-box probabilistic programming inference over public
health scenarios of interest in these two domains.

We expect the mentioned techniques to play a role in dealing
with communicable (infectious) diseases, which already en-
tailed a significant burden for health systems in developing
countries [35] before the worldwide impact of COVID-19.
However, they can also be applicable to non-communicable
diseases, such as diabetes and cancer, which are recognised
major causes of morbidity and mortality worldwide [4, 30].
This will add to the already identified potential of machine
learning in health policy [5] and improving health access,
emphasising its value for global health in the efforts to
achieve universal health coverage and sustainable develop-
ment goals [39, 54].

5
https://github.com/pyprob/pyprob
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[8] Atılım Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas
Heinrich, Lawrence Meadows, Jialin Liu, Andreas
Munk, Saeid Naderiparizi, Bradley Gram-Hansen,
Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip
Torr, Victor Lee, Kyle Cranmer, Prabhat, and Frank

Wood. Etalumis: Bringing Probabilistic Program-
ming to Scientific Simulators at Scale. Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–24, November 2019. doi: 10.1145/3295500.
3356180. URL http://arxiv.org/abs/1907.
03382. arXiv: 1907.03382.

[9] Mark A Beaumont, Wenyang Zhang, and David J Bald-
ing. Approximate Bayesian computation in population
genetics. Genetics, 162(4):2025–2035, 2002.

[10] Eli Bingham, Jonathan P Chen, Martin Jankowiak,
Fritz Obermeyer, Neeraj Pradhan, Theofanis Karalet-
sos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D Goodman. Pyro: Deep universal probabilis-
tic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.

[11] Fred Brauer. Compartmental models in epidemiology.
In Mathematical Epidemiology, pages 19–79. Springer,
2008.

[12] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-
Li Meng. Handbook of Markov Chain Monte Carlo.
CRC press, 2011.
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