
Etalumis: Bringing Probabilistic Programming to Scientific
Simulators at Scale

Atılım Güneş Baydin
University of Oxford

Lei Shao
Intel Corporation

Wahid Bhimji
Lawrence Berkeley National

Laboratory

Lukas Heinrich
CERN

Lawrence Meadows
Intel Corporation

Jialin Liu
Lawrence Berkeley National

Laboratory

Andreas Munk
University of British Columbia

Saeid Naderiparizi
University of British Columbia

Bradley Gram-Hansen
University of Oxford

Gilles Louppe
University of Liège

Mingfei Ma
Intel Corporation

Xiaohui Zhao
Intel Corporation

Philip Torr
University of Oxford

Victor Lee
Intel Corporation

Kyle Cranmer
New York University

Prabhat
Lawrence Berkeley National

Laboratory

Frank Wood
University of British Columbia

ABSTRACT
Probabilistic programming languages (PPLs) are receiving wide-
spread attention for performing Bayesian inference in complex
generative models. However, applications to science remain limited
because of the impracticability of rewriting complex scientific simu-
lators in a PPL, the computational cost of inference, and the lack of
scalable implementations. To address these, we present a novel PPL
framework that couples directly to existing scientific simulators
through a cross-platform probabilistic execution protocol and pro-
vides Markov chain Monte Carlo (MCMC) and deep-learning-based
inference compilation (IC) engines for tractable inference. To guide
IC inference, we perform distributed training of a dynamic 3DCNN–
LSTM architecture with a PyTorch-MPI-based framework on 1,024
32-core CPU nodes of the Cori supercomputer with a global mini-
batch size of 128k: achieving a performance of 450 Tflop/s through
enhancements to PyTorch. We demonstrate a Large Hadron Col-
lider (LHC) use-case with the C++ Sherpa simulator and achieve
the largest-scale posterior inference in a Turing-complete PPL.

1 INTRODUCTION
Probabilistic programming [71] is an emerging paradigmwithin ma-
chine learning that uses general-purpose programming languages
to express probabilistic models. This is achieved by introducing
statistical conditioning as a language construct so that inverse prob-
lems can be expressed. Probabilistic programming languages (PPLs)
have semantics [67] that can be understood as Bayesian inference
[13, 24, 26]. The major challenge in designing useful PPL systems
is that language evaluators must solve arbitrary, user-provided in-
verse problems, which usually requires general-purpose inference
algorithms that are computationally expensive.

In this paper we report our work that enables, for the first time,
the use of existing stochastic simulator code as a probabilistic pro-
gram in which one can do fast, repeated (amortized) Bayesian infer-
ence; this enables one to predict the distribution of input parameters
and all random choices in the simulator from an observation of its
output. In other words, given a simulator of a generative process in
the forward direction (inputs→outputs), our technique can provide
the reverse (outputs→inputs) by predicting the whole latent state
of the simulator that could have given rise to an observed instance
of its output. For example, using a particle physics simulation we
can get distributions over the particle properties and decays within
the simulator that can give rise to a collision event observed in a
detector, or, using a spectroscopy simulator we can determine the
elemental matter composition and dispersions within the simulator
explaining an observed spectrum. In fields where accurate simu-
lators of real-world phenomena exist, our technique enables the
interpretable explanation of real observations under the structured
model defined by the simulator code base.

We achieve this by defining a probabilistic programming execu-
tion protocol that interfaces with existing simulators at the sites of
random number draws, without altering the simulator’s structure
and execution in the host system. The random number draws are
routed through the protocol to a PPL system which treats these
as samples from corresponding prior distributions in a Bayesian
setting, giving one the capability to record or guide the execution
of the simulator to perform inference. Thus we generalize existing
simulators as probabilistic programs and make them subject to
inference under general-purpose inference engines.

Inference in the probabilistic programming setting is performed
by sampling in the space of execution traces, where a single sample
(an execution trace) represents a full run of the simulator. Each

1

ar
X

iv
:1

90
7.

03
38

2v
2

 [
cs

.L
G

]
 2

7
A

ug
 2

01
9

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

execution trace itself is composed of a potentially unbounded se-
quence of addresses, prior distributions, and sampled values, where
an address is a unique label identifying each random number draw.
In other words, we work with empirical distributions over simu-
lator executions, which entails unique requirements on memory,
storage, and computation that we address in our implementation.
The addresses comprising each trace give our technique the unique
ability to provide direct connections to the simulator code base
for any predictions at test time, where the simulator is no longer
used as a black box but as a highly structured and interpretable
probabilistic generative model that it implicitly represents.

Our PPL provides inference engines from the Markov chain
Monte Carlo (MCMC) and importance sampling (IS) families.MCMC
inference guarantees closely approximating the true posterior of
the simulator, albeit with significant computational cost due to its
sequential nature and the large number of iterations one needs to
accumulate statistically independent samples. Inference compila-
tion (IC) [47] addresses this by training a dynamic neural network
to provide proposals for IS, leading to fast amortized inference.

We name this project “Etalumis”, the word “simulate” spelled
backwards, as a reference to the fact that our technique essentially
inverts a simulator by probabilistically inferring all choices in the
simulator given an observation of its output. We demonstrate this
by inferring properties of particles produced at the Large Hadron
Collider (LHC) using the Sherpa1 [29] simulator.

1.1 Contributions
Our main contributions are:
• A novel PPL framework that enables execution of existing sto-
chastic simulators under the control of general-purpose inference
engines, with HPC features including handling multi-TB data
and distributed training and inference.
• The largest scale posterior inference in a Turing-complete PPL,
where our experiments encountered approximately 25,000 latent
variables2 expressed by the existing Sherpa simulator code base
of nearly one million lines of code in C++ [29].
• Synchronous data parallel training of a dynamic 3DCNN–LSTM
neural network (NN) architecture using the PyTorch [61] MPI
framework at the scale of 1,024 nodes (32,768 CPU cores) with
a global minibatch size of 128k. To our knowledge this is the
largest scale use of PyTorch’s builtin MPI functionality,3 and the
largest minibatch size used for this form of NN model.

2 PROBABILISTIC PROGRAMMING FOR
PARTICLE PHYSICS

Particle physics seeks to understand particles produced in collisions
at accelerators such at the LHC at CERN. Collisions happen millions
of times per second, creating cascading particle decays, observed in
complex instruments such as the ATLAS detector [2], comprising
millions of electronics channels. These experiments analyze the vast
volume of resulting data and seek to reconstruct the initial particles

1https://gitlab.com/sherpa-team/sherpa
2Note that the simulator defines an unlimited number of random variables because of
the presence of rejection sampling loops.
3Personal communication with PyTorch developers.

produced in order to make discoveries including physics beyond
the current Standard Model of particle physics [28][73][63][72].

The Standard Model has a number of parameters (e.g., particle
masses), which we can denote θ , describing the way particles and
fundamental forces act in the universe. In a given collision at the
LHC, with initial conditions denoted E, we observe a cascade of
particles interact with particle detectors. If we denote all of the
random “choices” made by nature as x, the Standard Model de-
scribes, generatively, the conditional probability p(x|E,θ), that is,
the distribution of all choices x as a function of initial conditions E
and model parameters θ . Note that, while the Standard Model can
be expressed symbolically in mathematical notation [32, 62], it can
also be expressed computationally as a stochastic simulator [29],
which, given access to a random number generator, can draw sam-
ples from p(x).4 Similarly, a particle detector can be modeled as a
stochastic simulator, generating samples from p(y|x), the likelihood
of observation y as a function of x.

In this paper we focus on a real use-case in particle physics,
performing experiments on the decay of the τ (tau) lepton. This is
under active investigation by LHC physicists [4] and important to
uncovering properties of the Higgs boson. We use the state-of-the-
art Sherpa simulator [29] for modeling τ particle creation in LHC
collisions and their subsequent decay into further particles (the
stochastic events x above), coupled to a fast 3D detector simulator
for the detector observation y.

Current methods in the field include performing classification
and regression using machine learning approaches on low dimen-
sional distributions of derived variables [4] that provide point-
estimates without the posterior of the full latent state nor the deep
interpretability of our approach. Inference of the latent structure
has only previously been used in the field with drastically simplified
models of the process and detector [43] [3].

PPLs allow us to express inference problems such as: given an
actual particle detector observation y, what sequence of choices x
are likely to have led to this observation? In other words, we would
like to find p(x|y), the distribution of x as a function of y. To solve
this inverse problem via conditioning requires invoking Bayes rule

p(x|y) = p(y, x)
p(y) =

p(y|x)p(x)∫
p(y|x)p(x)dx

where the posterior distribution of interest, p(x|y), is related to the
composition of the two stochastic simulators in the form of the
joint distributionp(y, x) = p(y|x)p(x) renormalized by the marginal
probability, or evidence of the data, p(y) =

∫
p(y|x)p(x)dx. Com-

puting the evidence requires summing over all possible paths that
the simulation can take. This is a large number of possible paths;
in most models this is a quantity that is impossible to compute
in polynomial time. In practice PPLs approximate the posterior
p(x|y) using sampling-based inference engines that sidestep the
integration problem but remain computationally intensive. This
specifically is where probabilistic programming meets, for the first
time in this paper, high-performance computing.

4Dropping the dependence on E and θ because everything in this example is condi-
tionally dependent on these quantities.

2

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

3 STATE OF THE ART
3.1 Probabilistic programming
Within probabilistic programming, recent advances in computa-
tional hardware have made it possible to distribute certain types of
inference processes, enabling inference to be applied to problems of
real-world relevance [70]. By parallelizing computation over several
cores, PPLs have been able to perform large-scale inference on mod-
els with increasing numbers of observations, such as the cause and
effect analysis of 1.6 × 109 genetic measurements [30, 70], spatial
analysis of 1.5 × 104 shots from 308 NBA players [18], exploratory
analysis of 1.7 × 106 taxi trajectories [36], and probabilistic model-
ing for processing hundreds-of-thousands of Xbox live games per
day to rank and match players fairly [33, 55].

In all these large-scale programs, despite the number of obser-
vations being large, model sizes in terms of the number of latent
variables have been limited [36]. In contrast, to perform inference in
a complex scientific model such as the Standard Model encoded by
Sherpa requires handling thousands of latent variables, all of which
need to be controlled within the program to perform inference in
a scalable manner. To our knowledge, no existing PPL system has
been used to run inference at the scale we are reporting in this
work, and instances of distributed inference in existing literature
have been typically restricted to small clusters [19].

A key feature of PPLs is that they decouple model specification
from inference. Amodel is implemented by the user as a stand-alone
regular program in the host programming language, specifying a
generative process that produces samples from the joint prior dis-
tribution p(y, x) = p(y|x)p(x) in each execution, that is, a forward
model going from choices x to outcomes (observations) y. The same
program can then be executed using a variety of general-purpose
inference engines available in the PPL system to obtain p(x|y), the
inverse going from observations y to choices x. Inference engines
available in PPLs range from MCMC-based lightweight Metropolis
Hastings (LMH) [74] and random-walk Metropolis Hastings (RMH)
[46] algorithms to importance sampling (IS) [8] and sequential
Monte Carlo [22]. Modern PPLs such as Pyro [11] and TensorFlow
Probability [19, 70] use gradient-based inference engines including
variational inference [36, 42] and Hamiltonian Monte Carlo [37, 57]
that benefit from modern deep learning hardware and automatic
differentiation [9] features provided by PyTorch [61] and Tensor-
Flow [5] libraries. Another way of making use of gradient-based
optimization is to combine IS with deep-learning-based proposals
trained with data sampled from the probabilistic program, resulting
in the IC algorithm [47, 49] in an amortized inference setting [25].

3.2 Distributed training for deep learning
To perform IC inference in Turing-complete PPLs in general, we
would like to support the training of dynamic NNs whose runtime
structure changes in each execution of the probabilistic model by re-
arranging NNmodules corresponding to different addresses (unique
random number draws) encountered [47] (Section 4.3). Moreover,
depending on probabilistic model complexity, the NNs may grow
in size if trained in an online setting, as a model can represent a
potentially unbounded number of random number draws. In addi-
tion to these, the volume of training data required is large, as the
data keeps track of all execution paths within the simulator. To

...

...Simulator

Probabilistic
Inference engine

Call

Call
resultSample

Sample
result

Sample

Sample
result

Observe

Observe
result

Simulator execution

Trace recording and control

START A1 A2 A3 END

START A1 A2 A3 END

Figure 1: The probabilistic execution protocol (PPX). Sam-
ple and observe statements correspond to random number
draws and conditioning, respectively.

enable rapid prototyping, model evaluation, and making use of HPC
capacity, scaling deep learning training to multiple computation
units is highly desirable [38, 44, 45, 51, 52].

In this context there are three prominent parallelism strategies:
data- and model-parallelism, and layer pipelining. In this project
we work in a data-parallel setting where different nodes train the
same model on different subsets of data. For such training, there
are synchronous- and asynchronous-update approaches. In syn-
chronous update [16, 59], locally computed gradients are summed
across the nodes at the same time with synchronization barriers
for parameter update. In asynchronous update [17, 58, 77], one
removes the barrier so that nodes can independently contribute to
a parameter server. Although synchronous update can entail chal-
lenges due to straggler effects [15, 69], it has desirable properties
in terms of convergence, reproducibility, and ease of debugging. In
this work, given the novelty of the probabilistic techniques we are
introducing and the need to fully understand and compare trained
NNs without ambiguity, we employ synchronous updates.

In synchronous updates, large global minibatches can make con-
vergence challenging and hinder test accuracy. Keskar et al. [39]
pointed out large-minibatch training can lead to sharp minima and
a generalization gap. Other work [31, 76] argues that the difficulties
in large-minibatch training are optimization related and can be
mitigated with learning rate scaling [31]. You et al. [76] apply layer-
wise adaptive rate scaling (LARS) to achieve large-minibatch-size
training of a Resnet-50 architecture without loss of accuracy, and
Ginsburg et al. [27] use layer-wise adaptive rate control (LARC) to
improve training stability and speed. Smith et al. [65] have proposed
to increase the minibatch size instead of decaying the learning rate,
and more recent work [53, 64] showed relationships between gradi-
ent noise scale (or training steps) and minibatch size. Through such
methods, distributed training has been scaled to many thousands
of CPUs or GPUs [44, 45, 51, 54]. While we take inspiration from
these recent approaches, our dynamic NN architecture and training
data create a distinct training setting which requires appropriate
innovations, as discussed in Section 4.3.

3

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

4 INNOVATIONS
4.1 PPX and pyprob: executing existing

simulators as probabilistic programs
One of our main contributions in Etalumis is the development of a
probabilistic programming execution protocol (PPX), which defines
a cross-platform API for the execution and control of stochastic
simulators5 (Figure 1). The protocol provides language-agnostic
definitions of common probability distributions and message pairs
covering the call and return values of: (1) program entry points;
(2) sample statements for random number draws; and (3) observe
statements for conditioning. The purpose of this protocol is twofold:

• It allows us to record execution traces of a stochastic simulator
as a sequence of sample and observe (conditioning) operations on
random numbers, each associated with an addressAt . We can use
these traces for tasks such as inspecting the probabilistic model
implemented by the simulator, computing likelihoods, learning
surrogate models, and generating training data for IC NNs.
• It allows us to control the execution of the simulator, at infer-
ence time, by making intelligent choices for each random num-
ber draw as the simulator keeps requesting random numbers.
General-purpose PPL inference guides the simulator by making
random number draws not from the prior p(x) but from proposal
distributions q(x|y) that depend on observed data y (Section 2).

PPX is based on flatbuffers,6 a streamlined version of Google pro-
tocol buffers, providing bindings into C++, C#, Go, Java, JavaScript,
PHP, Python, and TypeScript, enabling lightweight PPL front ends
in these languages—in the sense of requiring the implementation
of a simple intermediate layer to perform sample and observe opera-
tions over the protocol. We exchange PPX messages over ZeroMQ7

[34] sockets, which allow communication between separate pro-
cesses in the same machine (via inter-process sockets) or across a
network (via TCP). PPX is inspired by the Open Neural Network
Exchange (ONNX) project8 allowing interoperability between ma-
jor deep learning frameworks, and it allows the execution of any
stochastic simulator under the control of any PPL system, provided
that the necessary bindings are incorporated on both sides.

Using the PPX protocol as the interface, we implement two main
components: (1) pyprob, a PyTorch-based PPL9 in Python and (2)
a C++ binding to the protocol to route the random number draws
in Sherpa to the PPL and therefore allow probabilistic inference in
this simulator. Our PPL is designed to work with models written
in Python and other languages supported through PPX. This is
in contrast to existing PPLs such as Pyro [11] and TensorFlow
Probability [19, 70] which do not provide a way to interface with
existing simulators and require one to implement any model from
scratch in the specific PPL.10 We develop pyprob based on PyTorch
[61], to utilize its automatic differentiation [9] infrastructure with
support for dynamic computation graphs for IC inference.

5https://github.com/probprog/ppx
6http://google.github.io/flatbuffers/
7http://zeromq.org/
8https://onnx.ai/
9https://github.com/probprog/pyprob
10We are planning to provide PPX bindings for these PPLs in future work.

4.2 Efficient Bayesian inference
Working with existing simulators as probabilistic programs restricts
the class of inference engines that we can put to use. Modern PPLs
commonly use gradient-based inference such as HamiltonianMonte
Carlo [57] and variational inference [36, 42] to approximate pos-
terior distributions. However this is not applicable in our setting
due to the absence of derivatives in general simulator codes. There-
fore in pyprob we focus our attention on two inference engine
families that can control Turing-complete simulators over the PPX
protocol: MCMC in the RMH variety [46, 74], which provides a
high-compute-cost sequential algorithm with statistical guarantees
to closely approximate the posterior, and IS with IC [47], which
does not require derivatives of the simulator code but still benefits
from gradient-based methods by training proposal NNs and using
these to significantly speed up IS inference.

It is important to note that the inference engines in pyprob work
in the space of execution traces of probabilistic programs, such that
a single sample from the inference engine corresponds to a full run
of the simulator. Inference in this setting amounts to making ad-
justments to the random number draws, re-executing the simulator,
and scoring the resulting execution in terms of the likelihood of
the given observation. Depending on the specific observation and
the simulator code involved, inference is computationally very ex-
pensive, requiring up to millions of executions in the RMH engine.
Despite being very costly, RMH provides a way of sampling from
the true posterior [56, 57], which is needed in initial explorations
of any new simulator to establish correct posteriors serving as ref-
erence to confirm that IC inference can work correctly in the given
setting. To establish the correctness of our inference results, we
implement several MCMC convergence diagnostics. Autocorrela-
tion measures the number of iterations one needs to get effectively
independent samples in the same MCMC chain, which allows us
to estimate how long RMH needs to run to reach a target effective
sample size. The Gelman–Rubin metric, given multiple indepen-
dent MCMC chains sampled from the same posterior, compares
the variance of each chain to the pooled variance of all chains to
statistically establish that we converged on the true posterior [24].

RMH comes with a high computational cost. This is because it
requires a large number of initial samples to be generated that are
then discarded, of the order ∼ 106 for the Sherpa model we present
in this paper. This is required to find the posterior density, which,
as the model begins from an arbitrary point of the prior, can be
very far from the starting region. Once this “burn-in” stage is com-
pleted the MCMC chain should be sampling from within the region
containing the posterior. In addition to this, the sequential nature
of each chain limits our ability to parallelize the computation, again
creating computational inefficiencies in the high-dimensional space
of simulator execution traces that we work with in our technique.

In order to provide fast, repeated inference in a distributed set-
ting, we implement the IC algorithm, which trains a deep recurrent
NN to provide proposals for an IS scheme [47]. This works by run-
ning the simulator many times and therefore sampling a large set
of execution traces from the simulator prior p(x, y), and using these
to train a NN that represents q(x|y), i.e., informed proposals for ran-
dom number draws x given observations y, by optimizing the loss
L(ϕ) = Ep(y)

[
DKL(p(x|y)| |qϕ (x|y))

]
= Ep(x,y)

[
− logqϕ (x|y)

]
+

4

https://github.com/probprog/ppx
http://google.github.io/flatbuffers/
http://zeromq.org/
https://github.com/probprog/pyprob

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

const., where ϕ are NN parameters (Algorithm 1 and Figure 3) [47].
This phase of sampling the training data and training the NN is
costly, but it needs to be performed only once for any given model.
Once the proposal NN is trained to convergence, the IC inference
engine becomes competitive in performance, which allows us to
achieve a given effective sample size in the posterior p(x|y) using a
fraction of the RMH computational cost. IC inference is embarrass-
ingly parallel, where many instances of the same trained NN can
be executed to run distributed inference on a given observation.

To further improve inference performance, we make several low-
level improvements in the code base. The C++ front end of PPX
uses concatenated stack frames of each random number draw as a
unique address identifying a latent variable in the corresponding
PPL model. Stack traces are obtained with the backtrace(3) func-
tion as instruction addresses and then converted to symbolic names
using the dladdr(3) function [50]. The conversion is quite expen-
sive, which prompted us to add a hash map to cache dladdr results,
giving a 5x improvement in the production of address strings that
are essential in our inference engines. The particle detector simula-
tor that we use was initially coded to use the xtensor library11 to
implement the probability density function (PDF) of multivariate
normal distributions in the general case, but was exclusively called
on 3D data. This code was replaced by a scalar-based implemen-
tation limited to the 3D case, resulting in a 13x speed-up in the
PDF, and a 1.5x speed-up of our simulator pipeline in general. The
bulk of our further optimizations focus on the NN training for IC
inference and are discussed in the next sections.

4.3 Dynamic neural network architecture
The NN architecture used in IC inference is based on a LSTM [35] re-
current core that gets executed asmany time steps as the simulator’s
probabilistic trace length (Figure 3). To this core NN, various other
NN components get attached according to the series of addresses
At executed in the simulator. In other words, we construct a dy-
namic NNwhose runtime structure changes in each execution trace,
implemented using the dynamic computation graph infrastructure
in PyTorch. The input to this LSTM in each time step is a concate-
nation of embeddings of the observation, the current address in
the simulator, and the previously sampled value. The observation
embedding is a NN specific to the observation domain. Address
embeddings are learned vectors representing the identity of random
choices At in the simulator address space. Sample embeddings are
address-specific layers encoding the value of the random draw in
the previous time step. The LSTM output, at each time step, is fed
into address-specific proposal layers that provide the final output
of the NN for IC inference: proposal distributions q(x|y) to use for
each addressAt as the simulator keeps running and requesting new
random numbers over the PPX protocol (Section 4.1).

For the Sherpa experiments reported in this paper, we work with
3D observations of size 35x35x20, representing particle detector
voxels. To tune NN architecture hyperparameters, we search a grid
of LSTM stacks in range {1, 4}, LSTM hidden units in the set {128,
256, 512}, and number of proposal mixture components in the set
{5, 10, 25, 50} (Figure 2). We settle on the following architecture: an
LSTM with 512 hidden units; an observation embedding of size 256,

11https://xtensor.readthedocs.io

0 1 2 3 4 5 6 7 8
Trace 1e6

0

1

2

3

4

5

6

Lo
ss

LSTM Units=128 Stacks=1 Prop Mix=10
LSTM Units=128 Stacks=2 Prop Mix=10
LSTM Units=128 Stacks=3 Prop Mix=10
LSTM Units=128 Stacks=4 Prop Mix=10
LSTM Units=256 Stacks=1 Prop Mix=10
LSTM Units=256 Stacks=2 Prop Mix=10
LSTM Units=256 Stacks=3 Prop Mix=10
LSTM Units=256 Stacks=4 Prop Mix=10
LSTM Units=512 Stacks=1 Prop Mix=10
LSTM Units=512 Stacks=2 Prop Mix=10
LSTM Units=512 Stacks=3 Prop Mix=10
LSTM Units=512 Stacks=4 Prop Mix=10
LSTM Units=512 Stacks=1 Prop Mix= 5
LSTM Units=512 Stacks=1 Prop Mix= 10
LSTM Units=512 Stacks=1 Prop Mix= 25
LSTM Units=512 Stacks=1 Prop Mix= 50

Figure 2: Loss curves for NN architectures considered in the
hyperparameter search detailed in the text.

encoded with a 3D convolutional neural network (CNN) [48] acting
as a feature extractor, with layer configuration Conv3D(1, 64, 3)–
Conv3D(64, 64, 3)–MaxPool3D(2)–Conv3D(64, 128, 3)–Conv3D(128,
128, 3)–Conv3D(128, 128, 3)– MaxPool3D(2)–FC(2048, 256); previ-
ous sample embeddings of size 4 given by single-layer NNs; and ad-
dress embeddings of size 64. The proposal layers are two-layer NNs,
the output of which are either a mixture of ten truncated normal
distributions [12] (for uniform continuous priors) or a categorical
distribution (for categorical priors). We use ReLU nonlinearities in
all NN components. All of these NN components except the LSTM
and the 3DCNN are dependent on addresses At in the simulator,
and these address-specific layers are created at the first encounter
with a random number draw at a given address. Thus the number
of trainable parameters in an IC NN is dependent on the size of the
training data, because the more data gets used, the more likely it
becomes to encounter new addresses in the simulator.

The pyprob framework is capable of operating in an “online”
fashion, where NN training and layer generation happens using
traces sampled by executing the simulator on-the-fly and discarding
traces after each minibatch, or “offline”, where traces are sampled
from the simulator and saved to disk as a dataset for further reuse
(Algorithm 2). In our experiments, we used training datasets of 3M
and 15M traces, resulting in NN sizes of 156,960,440 and 171,732,688
parameters respectively. All timing and scaling results presented in
Sections 6.1 and 6.2 are performed with the larger network.

4.4 Training of dynamic neural networks
Scalable training of dynamic NNs we introduced in Section 4.3
pose unique challenges. Because of the address-dependent nature
of the embedding and proposal layers of the overall IC NN, differ-
ent nodes/ranks in a distributed training setting will work with
different NN configurations according to the minibatch of training
data they process at any given time. When the same NN is not
shared across all nodes/ranks, it is not possible to rely on a generic
allreduce operation for gradient averaging which is required for
multi-node synchronous SGD. Inspired by neural machine trans-
lation (NMT) [75], in the offline training mode with training data
saved on the disk, we implemented the option of pre-processing the
whole dataset to pre-generate all embedding and proposal layers
that a given dataset would imply to exist. Once layer pre-generation

5

https://xtensor.readthedocs.io

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

x1

A2

xN-1

AN

0
A1

LSTM

q(x1|y) q(x2|x1,y) q(xN|x1:N-1,y)

…

…

…

3D-CNN

yobs

ysim

INFERENCE

p(x1) p(x2|x1) p(xN|x1:N-1)…

x1 x2 xNSamples (trace)

Priors or likelihoods

Proposals

Proposal
layers

LSTM inputs:
- Observ. embed.
- Address embed.
- Sample embed.

SIMULATION

Addresses A1 A2 AN

…

…

p(y|x1:N)

Simulation
output

Observed
output

Figure 3: Simulation and inference. Top: model addresses,
priors and samples. Bottom: IC inference engine proposals
and NN architecture.

is done, the collection of all embedding and proposal layers are
shared on each node/rank. In this way, for offline training, we have
a globally shared NN representing the superset of all NN com-
ponents each node needs to handle in any given minibatch, thus
making it possible to scale training of the NN on multiple nodes.

Our allreduce-based training algorithm can also work in the
online training setting, where training data is sampled from the
simulator on-the-fly, if we freeze a globally shared NN and discard
any subsequently encountered traces that contain addresses un-
known at the time of NN architecture freezing. In future work, we
intend to add a distributed open-ended implementation for online
training to allow running without discarding, that will require the
NN instances in each node/rank to grow with newly seen addresses.

4.4.1 Single node improvements to Etalumis. We profiled the Etalu-
mis architecture with vtune, Cprofiler, and PyTorch autograd pro-
filer, identifying data loading and 3D convolution as the primary
computational hot-spots on which we focused our optimization
efforts. We provide details on data loading and 3D convolution in
the subsequent sections. In addition to these, execution traces from
the Sherpa simulator have many different trace types (a unique
sequence of addresses At , with different sampled values) with dif-
ferent rates of occurrence: in a given dataset, some trace types
can be encountered thousands of times while others are seen only
once. This is problematic because at training time we further divide
each minibatch into “sub-minibatches” based on trace type, where
each sub-minibatch can be processed by the NN in a single forward
execution due to all traces being of the same type, i.e., sharing the
same sequence of addressesAt and therefore requiring the same NN
structure (Algorithm 1). Therefore minibatches containing more
than one trace type do not allow for effective parallelization and vec-
torization. In other words, unlike conventional NNs, the effective

Algorithm 1 Computing minibatch loss Ln of NN parameters ϕ
Require: Minibatch Dn
L← number of unique trace types found in Dn
Construct sub-minibatches Dl

n , for l = 1, . . . ,L
Ln ← 0
for l ∈ {1, . . . ,L} do
Ln ← Ln −

∑
(x ,y)∈Dl

n
logqϕ (x |y)

end for
return Ln

Algorithm 2 Distributed training with MPI backend. p(x ,y) is the
simulator and Ĝ(x ,y) is an offline dataset sampled from p(x ,y)
Require: OnlineData {True/False value}
Require: B {Minibatch size}

Initialize inference network qϕ (x |y)
N ← number of processes
for all n ∈ {1, . . . ,N } do

while Not Stop do
if OnlineData then

Sample Dn = {(x ,y)1, . . . , (x ,y)B } from p(x ,y)
else

Get Dn = {(x ,y)1, . . . , (x ,y)B } from Ĝ(x ,y)
end if
Synchronize parameters (ϕ) across all processes
Ln ← − 1

B
∑
(x ,y)∈Dn logqϕ (x |y)

Calculate ∇ϕLn
Call all_reduce s.t. ∇ϕL ← 1

N
∑N
n=1 ∇ϕLn

Update ϕ using ∇ϕL with e.g. ADAM, SGD, LARC, etc.
end while

end for

minibatch size is determined by the average size of sub-minibatches,
and the more trace types we have within a minibatch, the slower
the computation. To address this, we explored multiple methods
to enlarge effective minibatch size, such as sorting traces, multi-
bucketing, and selectively batching traces from the same trace type
together in each minibatch. These options and their trade offs are
described in more detail in Section 7.

4.4.2 Single node improvements to PyTorch. The flexibility of dy-
namic computation graphs and competitive speed of PyTorch have
been crucial for this project. Optimizations were performed on
code belonging to Pytorch stable release v1.0.0 to better support
this project on Intel® Xeon® CPU platforms, focused in particular
on 3D convolution operations making use of the MKL-DNN open
source math library. MKL-DNN uses a direct convolution algorithm
and for a 5-dimensional input tensor with layout {N, C, D, H, W},
it is reordered into a layout of {N, C, D, H, W, 8c} which is more
amenable for SIMD vectorization.12 The 3D convolution operator is
vectorized on the innermost dimension which matches the 256-bit
instruction length on AVX2, and parallelized on the outer dimen-
sions. We also performed cache optimization to further improve
performance. With these improvements we found the heavily used
3D convolution kernel achieved an 8x improvement on the Cori
HSW platform.13 The overall improvement on single node training

12https://intel.github.io/mkl-dnn/understanding_memory_formats.html
13https://docs.nersc.gov/analytics/machinelearning/benchmarks/

6

https://intel.github.io/mkl-dnn/understanding_memory_formats.html
https://docs.nersc.gov/analytics/machinelearning/benchmarks/

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

time is given in Section 6.1. These improvements are made available
in a fork of the official PyTorch repository.14

4.4.3 I/O optimization. I/O is challenging in many deep learning
workloads partly due to random access patterns, such as those in-
duced by shuffling, disturbing any pre-determined access order. In
order to reduce the number of random access I/O operations, we
developed a parallel trace sorting algorithm and pre-sorted the 15M
traces according to trace type (Section 4.4.1). We further grouped
the small trace files into larger files, going from 750 files with 20k
traces per file to 150 files with 100k traces per file. With this group-
ing and sorting, we ensured that I/O requests follow a sequential
access onto a contiguous file region which further improved the I/O
performance. Metadata operations are also costly, so we enhanced
the Python shelve module’s file open/close performance with a
caching mechanism, which allows concurrent access from different
ranks to the same file.

Specific to our PPL setting, training data consists of execution
traces that have a complex hierarchy, with each trace file containing
many trace objects that consist of variable sequences of sample
objects representing random number draws, which further con-
tain variable length tensors, strings, integers, booleans, and other
generic Python objects. PyTorch serialization with pickle is used
to handle the complex trace data structure, but the pickle and un-
pickle overhead are very high. We developed a “pruning” function
to shrink the data by removing non-necessary structures. We also
designed a dictionary of simulator addressesAt , which accumulates
the fairly long address strings and assigns shorthand IDs that are
used in serialization. This brought a 40% memory consumption
reduction as well as large disk space saving.

For distributed training, we developed distributed minibatch
sampler and dataset classes conforming to the PyTorch training
API. The sampler first splits the sorted trace indices into minibatch-
sized chunks, so that all traces in each minibatch are highly likely
to be of the same type, then optionally groups these chunks into
several buckets (Section 7.2). Within each bucket, the chunks are
assigned with a round-robin algorithm to different ranks, such
that each rank has roughly same distribution of workload. The
distributed sampler enables us to scale the training at 1,024 nodes.

The sorting of traces and their grouping into minibatch chunks
significantly improves the training speed (up to 50× in our ex-
periments) by enabling all traces in a minibatch to be propagated
through the NN in the same forward execution, in other words,
decreasing the need for “sub-minibatching” (Section 4.4.1). This
sorting and chunking scheme generates minibatches that predomi-
nantly contain a single trace type. However, the minibatches used
at each iteration are sampled randomly without replacement from
different regions of the sorted training set, and therefore contain
different trace types, resulting in a gradient unbiased in expectation
during any given epoch.

In our initial profiling, the cost of I/O was more than 50% of total
run time. With these data re-structuring and parallel I/O optimiza-
tions, we reduced the I/O to less than 5%, achieving 10x speedup at
different scales.

14Intel-optimized PyTorch: https://github.com/intel/pytorch

4.4.4 Distributed improvements to PyTorch MPI CPU code. PyTorch
has a torch.distributed backend,15 which allows scalable distributed
training with high performance on both CPU and GPU clusters. Eta-
lumis uses theMPI backend as appropriate for the synchronous SGD
setting that we implement (Algorithm 2) and the HPC machines we
utilize (Section 5).We havemade various improvements to this back-
end to enable the large-scale distributed training on CPU systems re-
quired for this project. The call torch.distributed.all_reduce
is used to combine the gradient tensors for all distributed MPI ranks.
In Etalumis, the set of non-null gradient tensors differs for each
rank and is a small fraction of the total set of tensors. Therefore we
first perform an allreduce to obtain a map of all the tensors that
are present on all ranks; then we create a list of the tensors, filling
in the ones that are not present on our rank with zero; finally, we
reduce all of the gradient tensors in the list. PyTorch all_reduce
does not take a list of tensors so normally a list comprehension is
used, but this results in one call to MPI_Allreduce for each tensor.
We modified PyTorch all_reduce to accept a list of tensors. Then,
in the PyTorch C++ code for allreduce, we concatenate small ten-
sors into a buffer, call MPI_Allreduce on the buffer, and copy the
results back to the original tensor. This eliminates almost all the
allreduce latency and makes the communication bandwidth-bound.

We found that changing Etalumis to reduce only the non-null
gradients gives a 4x improvement in allreduce time. Tensor con-
catenation improves overall performance by an additional 4% on
one node which increases as nodes are added. With these improve-
ments, the load balance effects discussed in Sections 6.2 and 7.2 are
dominant and so are our primary focus of further distributed opti-
mizations. Other future work could include performing the above
steps for each backward layer with an asynchronous allreduce to
overlap the communications for the previous layer with the com-
putation for the current layer.

5 SYSTEMS AND SOFTWARE
5.1 Cori
We use the “data” partition of the Cori system at the National
Energy Research Scientific Computing Center (NERSC) at Lawrence
Berkeley National Laboratory. Cori is a Cray XC40 system, and the
data partition features 2,388 nodes. Each node has two sockets and
each socket is populated with a 16-core 2.3 GHz Intel® Xeon® E5-
2698 v3 CPU (referred to as HSW from now on), with peak single-
precision (SP) performance of 1.2 Tflop/s and 128 GB of DDR4-
2133 DRAM. Nodes are connected via the Cray Aries low-latency,
high-bandwidth interconnect utilizing the dragonfly topology. In
addition, the Cori system contains 288 Cray DataWarp nodes (also
known as the “Burst Buffer”) which house the input datasets for the
Cori experiments presented here. Each DataWarp node contains
2 × 3.2 TB SSDs, giving a system total of 1.8 PB of SSD storage,
with up to 1.7 TB/sec read/write performance and over 28M IOP/s.
Cori also has a Sonnexion 2000 Lustre filesystem, which consists of
248 Object Storage Targets (OSTs) and 10,168 disks, giving nearly
30 PB of storage and a maximum of 700 GB/sec IO performance.
This filesystem is used for output files (networks and logs) for Cori
experiments and both input and output for the Edison experiments.

15https://pytorch.org/docs/stable/distributed.html
7

https://github.com/intel/pytorch

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

Table 1: Intel®Xeon® CPU models and codes

Model Code
E5-2695 v2 @ 2.40GHz (12 cores/socket) IVB
E5-2698 v3 @ 2.30GHz (16 cores/socket) HSW
E5-2697A v4 @ 2.60GHz (16 cores/socket) BDW
Platinum 8170 @ 2.10GHz (26 cores/socket) SKL
Gold 6252 @ 2.10GHz (24 cores/socket) CSL

5.2 Edison
We also make use of the Edison system at NERSC. Edison is a Cray
XC30 system with 5,586 nodes. Each node has two sockets, each
socket is populated with a 12-core 2.4 GHz Intel® Xeon® E5-2695
v2 CPU (referred to as IVB from now on), with peak performance
of 460.8 SP Gflop/s, and 64 GB DDR3-1866 memory. Edison mounts
the Cori Lustre filesystem described above.

5.3 Diamond cluster
In order to evaluate and improve the performance on newer Intel®
processors we make use of the Diamond cluster, a small heteroge-
neous cluster maintained by Intel Corporation. The interconnect
uses Intel® Omni-Path Architecture switches and host adapters.
The nodes used for the results in this paper are all two socket
nodes. Table 1 presents the CPU models used and the three letter
abbreviations used in this paper.

5.4 Particle physics simulation software
In our experiments we use Sherpa version 2.2.3, coupled to a fast
3D detector simulator that we configure to use 20x35x35 voxels.
Sherpa is implemented in C++, and therefore we use the C++ front
end for PPX. We couple to Sherpa by a system-wide rerouting of
the calls to the random number generator, which is made easy by
the existence of a third-party random number generator interface
(External_RNG) already present in Sherpa.

For this paper, in order to facilitate reproducible experiments,
we run in the offline training mode and produce a sample of 15M
traces that occupy 1.7 TB on disk. Generation of this 15M dataset
was completed in 3 hours on 32 IVB nodes of Edison. The traces
are stored using Python shelve16 serialization, allowing random
access to all entries contained in the collection of files with 100k
traces in each file. These serialized files are accessed via the Python
dbm module using the gdbm backend.

6 EXPERIMENTS AND RESULTS
6.1 Single node performance
We ran single node tests with one rank per socket for one and
two ranks on the IVB nodes on Edison, the HSW partition of Cori
and the BDW, SKL, and CSL nodes of the Diamond cluster. Table 2
shows the throughput and single socket flop rate and percentage of
peak theoretical flop rate. We find that the optimizations described
in Section 4.4.2 provide an improvement of 7x on the overall single
socket run throughput (measured on HSW) relative to a default
PyTorch version v1.0.0 installed via the official conda channel. We
16https://docs.python.org/3/library/shelve.html

Table 2: Single node training throughput in traces/sec and
flop rate (Gflop/s). 1-socket throughput and flop rate are for
a single process while 2-socket is for 2 MPI processes on a
single node.

1-socket 2-socket 1-socket
Platform traces/s traces/s Gflop/s (% peak)
IVB (Edison) 13.9 25.6 196 (43%)
HSW (Cori) 32.1 56.5 453 (38%)
BDW (Diamond) 30.5 57.8 430 (32%)
SKL (Diamond) 49.9 82.7 704 (20%)
CSL (Diamond) 51.1 93.1 720 (22%)

Actual
1 socket

Actual
2 socket

Best
2 socket

Actual
64 socket

Best
64 socket

0

5

10

15

20

25

30

35

40

No
rm

al
ize

d
tim

e/
tra

ce
(m

se
c)

2.1 2.8 2.8 1.3 1.3
16.6 15.1 14.6

16.8 14.5

9.7 9.5 9.1 11.2
9.3

4.4 5.4 4.5
7.6

4.2

1.9
1.9

3.4

3.4

5%
19%

BDW Scaling and Imbalance
optimizer
backward
forward

batch_read
sync

Figure 4: Actual and estimated best times for 1, 2, and 64
sockets. Horizontal bars at the top are to aid comparison be-
tween columns.

achieve 430 SP Gflop/s on a single socket of the BDW system,
measured using the available hardware counters for 256-bit packed
SIMD single precision operations. This includes IO and is averaged
over an entire 300k trace run. This can be compared to a theoretical
peak flop rate for that BDW socket of 1,331 SP Gflop/s. Flop rates
for other platforms are scaled from this measurement and given in
Table 2. For further profiling we instrument the code with timers
for each phase of the training (in order): minibatch read, forward,
backward, and optimize. Figure 4 shows a breakdown of the time
spent on a single socket after the optimizations described in Sections
4.4.1 and 4.4.2.17

6.2 Multi-node performance
In addition to the single socket operations, we time the two synchro-
nization (allreduce) phases (gradient and loss). This information is
recorded for each rank and each minibatch. Postprocessing finds
the rank with the maximum work time (sum of the four phases

17See disclaimers section after conclusions.
8

https://docs.python.org/3/library/shelve.html

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

Figure 5: Mean loss and standard deviation (shaded) for five
experiments with 128k minibatch size.

mentioned in Section 6.1) and adds the times together. This gives
the actual execution time. Further, we compute the average time
across ranks for each work phase for each minibatch and add those
together, giving the best time assuming no load imbalance. The re-
sults are shown in Figure 4. Comparing single socket results with 2
and 64 socket results shows the increased impact of load imbalance
as nodes are added. This demonstrates a particular challenge of
this project where the load on each node depends on the random
minibatch of traces sampled for training on that node. The chal-
lenge and possible mitigation approaches we explored are discussed
further in Section 7.2.

6.3 Large scale training on Cori and Edison
In order to choose training hyperparameters, we explored global
minibatch sizes of {64, 2k, 32k, 128k}, and learning rates in the
range

[
10−7, 10−1

]
with grid search and compared the loss values

after one epoch to find the optimal learning rate for different global
minibatch sizes separately. For global minibatch sizes of 2k, 32k, and
128k, we trained with both Adam and Adam-LARC optimizers and
compared loss value changes as a function of iterations. For training
at 1,024 nodes we choose to use 32k and 128k global minibatch sizes.
For the 128k minibatch size, best convergence was found using the
Adam-LARC optimizer with a polynomial decay (order=2) learning
rate schedule [76] that decays from an initial global learning rate
of 5.70 × 10−4 to final 2 × 10−5 after completing 12 epochs for
the dataset with 15M traces. In Figure 5, we show the mean and
standard-deviation for five training runs with this 128k minibatch
size and optimizer, demonstrating stable convergence.

Figure 6 shows weak scaling results obtained for distributed
training to over a thousand nodes on both the Cori and Edison sys-
tems. We use a fixed local minibatch size of 64 per rank with 2 ranks
per node, and plot the mean and standard deviation throughput for
each iteration in terms of traces/s (labeled “average” in the plot). We
also show the fastest iteration (labeled “peak”). The average scaling
efficiency at 1,024 nodes is 0.79 on Edison and 0.5 on Cori. The
throughput at 1,024 nodes on Cori and Edison is 28,000 and 22,000
traces/s on average, with the peak as 42,000 and 28,000 traces/s

respectively. One can also see that there is some variation in this
performance due to the different compute times taken to process
execution traces of different length and the related load imbalance
as discussed in Sections 6.2 and 7.2. We determine the maximum
sustained performance over a 10-iteration sliding window to be
450 Tflop/s on Cori and 325 Tflop/s on Edison.18

We have performed distributed training with global minibatch
sizes of 32k and 128k at 1,024-node scale for extended periods to
achieve convergence on both Cori and Edison systems. This is
illustrated in Figure 7 where we show the loss for training and
validation datasets as a function of iteration for an example run on
Edison.

6.4 Inference and science results
Using our framework and the NNs trained using distributed re-
sources at NERSC as described previously, we perform inference on
test τ observation data that has not been used for training. As the
approach of applying probabilistic programming in the setting of
large-scale existing simulators is completely novel, there is no direct
baseline in literature that provides the full posterior in each of these
variables. Therefore we use our ownMCMC (RMH)-based posterior
as a baseline for the validation of the IC approach. We establish
the convergence of the RMH posterior by running two indepen-
dent MCMC chains with different initializations and computing the
the Gelman–Rubin convergence metric [24] to confirm that they
converge onto the same posterior distribution (Section 4.2).

Figure 8 shows a comparison of inference results from the RMH
and IC approaches. We show selected latent variables (addresses)
that are a small subset of the more than 24k addresses that were
encountered in the prior space of the Sherpa experimental setup,
but are of physics interest in that they correspond to properties of
the τ particle. It can be seen that there is close agreement between
the RMH and IC posterior distributions validating that our network
has been adequately trained. We have made various improvements
to the RMH inference processing rate but this form of inference
is compute intensive and takes 115 hours on a Edison IVB node
to produce the 7.68M trace result shown. The corresponding 2M
trace IC result completed in 30 mins (achieving a 230× speedup
for a comparable posterior result) on 24 HSW nodes, enabled by
the parallelism of IC inference.

In addition to parallelization, a significant advantage of the IC
approach is that it is amortized. This means that once the proposal
NN is trained for any given model, it can be readily applied to large
volumes of new collision data. Moreover IC inference runs with
high effective sample sizes in comparison to RMH: each sample
from the IC NN is an independent sample from the proposal distri-
bution, which approaches the true posterior distribution with more
training, whereas our autocorrelation measurements in the RMH
posterior indicate that a very large number of iterations are needed
to get statistically independent traces (on the order of ∼ 105 for
the type of decay event we use as the observation). These features
of IC inference combine to provide a tractable approach for fast
Bayesian inference in complex models implemented by large-scale
simulators.

18See disclaimers section after conclusions.
9

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

1 64 128 256 512 1024
Number of Nodes

0

10000

20000

30000

40000

50000

60000

Th
ro

ug
hp

ut
: T

ra
ce

s/
Se

c

Weak Scaling on Cori

Peak
Average
Ideal

1 64 128 256 512 1024
Number of Nodes

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
: T

ra
ce

s/
Se

c

Weak Scaling on Edison

Peak
Average
Ideal

Figure 6:Weak scaling on Cori and Edison systems, showing throughput for different node counts with a fixed local minibatch
size of 64 traces perMPI rankwith 2 ranks per node. Average (mean) over all iterations and the peak single iteration are shown.
Ideal scaling is derived from the mean single-node rate with a shaded uncertainty from the standard deviation in that rate.

0 100 200 300 400 500 600 700
Iteration

0

1

2

3

4

5

Lo
ss

Training
Validation

Figure 7: Training and validation loss for a 128k minibatch
size experiment with the configuration described in the text
run on 1,024 nodes of the Edison system.

7 DISCUSSION
The dynamic NN architecture employed for this project has pre-
sented a number of unique challenges for distributed training,
which we covered in Section 4.4. Our innovations proved successful
in enabling the training of this architecture at scale, and in this
section we capture some of the lessons learned and unresolved
issues encountered in our experiments.

7.1 Time to solution: trade-off between
throughput and convergence

7.1.1 Increasing effective local minibatch size. As mentioned in
Section 4.4.1, the distributed SGD scheme given in Algorithms 1
and 2 uses random traces sampled from the simulator, and can
suffer from slow training throughput if computation cannot be

2 0 2
Momentum [GeV/c]

0.0
0.2
0.4
0.6
0.8
1.0

 px

2 0 2
Momentum [GeV/c]

0.0

0.2

0.4

0.6

 py

43 44 45 46 47
Momentum [GeV/c]

0.0

0.1

0.2

0.3

 pz

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
Decay Channel

0 10 20 30 40
Energy [GeV]

0.00

0.05

0.10

0.15
FSP Energy 1

0 10 20 30 40
Energy [GeV]

0.00

0.05

0.10

0.15
FSP Energy 2

0 10 20 30 40
FSP 1 Energy [GeV]

0

10

20

30

40

FS
P

2
En

er
gy

 [G
eV

]

0 1 2 3
Missing ET

0.0

0.5

1.0

1.5

2.0
MET

Figure 8: A comparison of posterior distributions obtained
by RMH (filled histograms) and IC (outline histograms) and
the ground truth values (dashed vertical lines) for a test τ de-
cay observation.We show an illustrative subset of the latent
variables, including x, y and z components of the τ -lepton
momentum (top row), the energies of the twohighest energy
particles produced by the τ decay (middle left and bottom
center), a contour plot showing correlation between these
(bottom left), the τ decay channel (τ → π ντ as mode) (mid-
dle right), and the missing transverse energy (bottom right).

10

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

efficiently parallelized across the full minibatch due to the presence
of different trace types. Therefore, we explored the following meth-
ods to improve effective minibatch size: sorting the traces before
batching, online batching of the same trace types together, and
multi-bucketing. Each of these methods can improve throughput,
but risk introducing bias into SGD training or increasing the num-
ber of iterations to converge, so we compare the wall clock time
for convergence to determine the relative trade-off. The impact
of multi-bucketing is described and discussed in section 7.2 below.
Sorting and batching traces from the same trace type together offers
considerable throughput increase with a relatively small impact
on convergence, when combined with shuffling of minibatches for
randomness, so we used these throughput optimizations for the
results in this paper.

7.1.2 Choice of optimizers, learning rate scaling and scheduling for
convergence. There is considerable recent literature on techniques
for distributed and large-minibatch training, including scaling learn-
ing rates with number of nodes [31], alternative optimizers for
large-minibatch-size training, and learning rate decay [27, 41, 76].
The network employed in this project presents a very different
use-case to those considered in literature, prompting us to docu-
ment our experiences here. For learning rate scaling with node
count, we found sub-sqrt learning rate scaling works better than
linear for an Adam-based optimizer [41]. We also compared Adam
with the newer Adam-LARC optimizer [27, 76] for convergence
performance and found the Adam-LARC optimizer to perform bet-
ter for the very large global minibatch size 128k in our case. For
smaller global minibatch sizes of 32K or lower, both plain Adam
and Adam-LARC performed equally well. Finally, for the learning
rate decay scheduler, we explored the following options: no decay,
multi-step decay (per epoch), and polynomial decay of order 1 or 2
(calculated per iteration) [76]. We found that learning-rate decay
can improve training performance and polynomial decay of order
2 provided the most effective schedule.

7.2 Load balancing
As indicated in Section 6.2, our work involves distinct scaling chal-
lenges due to the variation in compute time depending on execution
trace length, address-dependent proposal and embedding layers,
and representation of trace types inside each minibatch. These fac-
tors contribute to load imbalance. The trace length variation bears
similarity to varying sequence lengths in NMT; however, unlike
that case it is not possible to truncate the execution traces, and
padding would introduce a cost to overall number of operations.

To resolve this load imbalance issue, we have explored a number
of options, building on those fromNMT, including amulti-bucketing
scheme and a novel dynamic batching approach.

In multi-bucketing [10, 20, 40], traces are grouped into several
buckets based on lengths, and every global minibatch is solely
taken from a randomly picked bucket for every iteration. Multi-
bucketing not only helps to balance the load among ranks for the
same iteration, but also increases the effective minibatch size as
traces from the same trace type have a higher chance to be in the
same minibatch than in the non-bucketing case, achieving higher
throughput. For a local minibatch-size of 16 with 10 buckets wemea-
sured throughput increases in the range of 30–60% at 128–256 node

scale on Cori. However, our current multi-bucketing implementa-
tion does multiple updates in the same bucket continuously. When
this implementation is used together with batching the traces from
the same trace type together (as discussed above in Section 7.1.1), it
negatively impacts convergence behavior. We believe this to be due
to the fact that training on each specific bucket for multiple updates
introduces over-fitting onto that specific subset of networks so
moving to a new bucket for multiple updates causes information of
the progress made with previous buckets to be lost. As such we did
not employ this configuration for the results reported in this paper.

With dynamic batching, we replaced the requirement of fixed
minibatch size per rank with a desired number of “tokens” per rank
(where a token is a unit of random number draws in each trace), so
that we can, for instance, allocate many short traces (with smaller
number of tokens each) for one rank but only a few long traces for
another rank, in order to balance the load for the LSTM network
due to length variation. While an equal-token approach has been
used in NMT, this did not offer throughput gains for our model,
which has an additional 3DCNN component in which the compute
time depends on the number of traces within the local minibatch,
so if dynamic batching only considers total tokens per rank for the
LSTM it can negatively impact the 3DCNN load.

Through these experiments we found that our current optimal
throughput and convergence performance came from not employ-
ing these load-balancing schemes although we intend to explore
modifications to these schemes as ongoing work.

8 SCIENCE IMPLICATIONS AND OUTLOOK
We have provided a common interface to connect PPLs with simu-
lators written in arbitrary code in a broad range of programming
languages. This opens up possibilities for future work in all applied
fields where simulators are used to model real-world systems, in-
cluding epidemiology modeling such as disease transmission and
prevention models [66], autonomous vehicle and reinforcement
learning environments [21], cosmology [7], and climate science
[68]. In particular, the ability to control existing simulators at scale
and to generate interpretable posteriors is relevant to scientific
domains where interpretability in model inference is critical.

We have demonstrated both MCMC- and IC-based inference of
detector data originating from τ -decays simulated with the Sherpa
Monte Carlo generator at scale. This offers, for the first time, the
potential of Bayesian inference on the full latent structure of the
large numbers of collision events produced at accelerators such
as the LHC, enabling deep interpretation of observed events. For
instance, ambiguity in the decay of a particle can be related exactly
to the physics processes in the simulator that would give rise to
that ambiguity. In order to fully realize this potential, future work
will expand this framework to more complex particle decays (such
as the Higgs decay to τ leptons) and incorporate a more detailed
detector simulation (e.g., Geant4 [6]). We will demonstrate this on
a full LHC physics analysis, reproducing the efficiency of point-
estimates, together with the full posterior and intpretability, so that
this can be exploited for discovery of new fundamental physics.

The IC objective is designed so that the NN proposal q(x|y) ap-
proximates the posterior p(x|y) asymptotically closely with more
training. This costly training phase needs to be done only once for

11

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

a given simulator-based model, giving us a NN that can provide
samples from the model posterior in parallel for any new observed
data. In this setting where have a fast, amortized q(x|y) ≈ p(x|y),
our ultimate goal is to add the machinery of Bayesian inference
to the toolbox for critical tasks such as triggering [1] and event
reconstruction by conditioning on potentially interesting events
(e.g., q(ParticleType|·) ≥ ϵ). Recent activity exploring the use of
FPGAs for NN inference for particle physics [23] will help imple-
mentation of these approaches, and HPC systems will be crucial in
the training and inference phases of such frameworks.

9 CONCLUSIONS
Inference in simulator-based models remains a challenging problem
with potential impact across many disciplines [14, 60]. In this paper
we present the first probabilistic programming implementation ca-
pable of controlling existing simulators and running at large-scale
on HPC platforms. Through the PPX protocol, our framework suc-
cessfully couples with large-scale scientific simulators leveraging
thousands of lines of existing simulation code encoding domain-
expert knowledge. To perform efficient inference we make use of
the inference compilation technique, and we train a dynamic neural
network involving LSTM and 3DCNN components, with a large
global minibatch size of 128k. IC inference achieved a 230× speedup
compared with the MCMC baseline. We optimize the popular Py-
Torch framework to achieve a significant single-socket speedup for
our network and 20–43% of peak theoretical flop rate on a range
of current CPUs.19 We augment and develop PyTorch’s MPI im-
plementation to run it at the unprecedented scale of 1,024 nodes
(32,768 and 24,576 cores) of the Cori and Edison supercomputers
with a sustained flop rate of 0.45 Pflop/s. We demonstrate we can
successfully train this network to convergence at these large scales,
and use this to perform efficient inference on LHC collision events.
The developments described here open the door for exploiting HPC
resources and existing detailed scientific simulators to perform
rapid Bayesian inference in very complex scientific settings.

DISCLAIMERS
Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any
of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.

For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing as of March 22 and March 28, 2019 and

may not reflect all publicly available security updates. See configuration disclosure for
details. No product or component can be absolutely secure.

Configurations: Testing on Cori and Edison (see §6.1) was performed by NERSC.
Testing on Diamond cluster was performed by Intel.

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance varies
depending on system configuration. Check with your system manufacturer or retailer
or learn more at www.intel.com.

Intel does not control or audit third-party benchmark data or the web sites refer-
enced in this document. You should visit the referenced web site and confirm whether
referenced data are accurate.

Intel, VTune, Xeon are trademarks of Intel Corporation or its subsidiaries in the
U.S. and/or other countries.

19See disclaimers section after conclusions.

ACKNOWLEDGMENTS
The authors would like to acknowledge valuable discussions with Thorsten Kurth on
scaling aspects, Quincey Koziol on I/O; Steve Farrell on NERSC PyTorch, Holger Schulz
on Sherpa, and Xiaoming Cui, from Intel AIPG team, on NMT. This research used
resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231. This work was partially supported by the NERSC Big Data Center;
we acknowledge Intel for their funding support. KC, LH, and GL were supported by
the National Science Foundation under the awards ACI-1450310. Additionally, KC was
supported by the National Science Foundation award OAC-1836650. BGH is supported
by the EPRSC Autonomous Intelligent Machines and Systems grant. AGB and PT
are supported by EPSRC/MURI grant EP/N019474/1 and AGB is also supported by
Lawrence Berkeley National Lab. FW is supported by DARPA D3M, under Cooperative
Agreement FA8750-17-2-0093, Intel under its LBNL NERSC Big Data Center, and an
NSERC Discovery grant.

REFERENCES
[1] Morad Aaboud et al. 2017. Performance of the ATLAS Trigger System in 2015.

European Physical Journal C77, 5 (2017), 317. https://doi.org/10.1140/epjc/
s10052-017-4852-3

[2] G. Aad et al. 2008. The ATLAS Experiment at the CERN Large Hadron Collider.
JINST 3 (2008), S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

[3] G. Aad et al. 2015. Search for the Standard Model Higgs boson produced in
association with top quarks and decaying into bb in pp collisions at sqrt s=8 TeV
with the ATLAS detector. The European Physical Journal C 75, 7 (29 Jul 2015),
349. https://doi.org/10.1140/epjc/s10052-015-3543-1

[4] G. Aad et al. 2016. Reconstruction of hadronic decay products of tau leptons with
the ATLAS experiment. The European Physical Journal C 76, 5 (25 May 2016),
295. https://doi.org/10.1140/epjc/s10052-016-4110-0

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[6] Sea Agostinelli, John Allison, K al Amako, J Apostolakis, H Araujo, P Arce, MAsai,
D Axen, S Banerjee, G Barrand, et al. 2003. GEANT4—a simulation toolkit. Nuclear
instruments and methods in physics research section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 506, 3 (2003), 250–303.

[7] Joël Akeret, Alexandre Refregier, Adam Amara, Sebastian Seehars, and Caspar
Hasner. 2015. Approximate Bayesian computation for forward modeling in
cosmology. Journal of Cosmology and Astroparticle Physics 2015, 08 (2015), 043.

[8] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. 2002. A
tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking.
IEEE Transactions on Signal Processing 50, 2 (2002), 174–188.

[9] Atılım Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2018. Automatic differentiation in machine learning: a
survey. Journal of Machine Learning Research (JMLR) 18, 153 (2018), 1–43. http:
//jmlr.org/papers/v18/17-468.html

[10] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 41–48.

[11] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D
Goodman. 2018. Pyro: Deep universal probabilistic programming. Journal of
Machine Learning Research (2018).

[12] Christopher M Bishop. 1994. Mixture density networks. Technical Report
NCRG/94/004. Neural Computing Research Group, Aston University.

[13] Christopher M Bishop. 2006. Pattern Recognition and Machine Learning. Springer.
[14] Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. 2018. Mining

gold from implicit models to improve likelihood-free inference. arXiv preprint
arXiv:1805.12244 (2018).

[15] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2016. Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981
(2016).

[16] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar,
B. Kaul, and P. Dubey. 2016. Distributed Deep Learning Using Synchronous
Stochastic Gradient Descent. ArXiv e-prints (Feb. 2016). arXiv:cs.DC/1602.06709

[17] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems -
Volume 1 (NIPS’12). Curran Associates Inc., USA, 1223–1231. http://dl.acm.org/
citation.cfm?id=2999134.2999271

[18] Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei.
2017. Variational Inference via \chi Upper Bound Minimization. In Advances in
Neural Information Processing Systems. 2732–2741.

[19] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan,
Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. 2017.

12

www.intel.com/benchmarks
www.intel.com
https://doi.org/10.1140/epjc/s10052-017-4852-3
https://doi.org/10.1140/epjc/s10052-017-4852-3
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1140/epjc/s10052-015-3543-1
https://doi.org/10.1140/epjc/s10052-016-4110-0
http://jmlr.org/papers/v18/17-468.html
http://jmlr.org/papers/v18/17-468.html
http://arxiv.org/abs/cs.DC/1602.06709
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://dl.acm.org/citation.cfm?id=2999134.2999271

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

TensorFlow distributions. arXiv preprint arXiv:1711.10604 (2017).
[20] Patrick Doetsch, Pavel Golik, and Hermann Ney. 2017. A comprehensive study

of batch construction strategies for recurrent neural networks in mxnet. arXiv
preprint arXiv:1705.02414 (2017).

[21] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1–16.

[22] Arnaud Doucet and Adam M Johansen. 2009. A tutorial on particle filtering and
smoothing: Fifteen years later. (2009).

[23] Javier Duarte et al. 2018. Fast inference of deep neural networks in FPGAs for
particle physics. JINST 13, 07 (2018), P07027. https://doi.org/10.1088/1748-0221/
13/07/P07027 arXiv:physics.ins-det/1804.06913

[24] Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson, Aki Vehtari, and
Donald B Rubin. 2013. Bayesian data analysis. Chapman and Hall/CRC.

[25] Samuel Gershman and Noah Goodman. 2014. Amortized inference in probabilistic
reasoning. In Proceedings of the Annual Meeting of the Cognitive Science Society,
Vol. 36.

[26] Zoubin Ghahramani. 2015. Probabilistic machine learning and artificial intelli-
gence. Nature 521, 7553 (2015), 452.

[27] B. Ginsburg, I. Gitman, and O. Kuchaiev. 2018. Layer-Wise Adaptive Rate Control
for Training of Deep Networks. in preparation (2018).

[28] Sheldon L Glashow. 1961. Partial-symmetries of weak interactions. Nuclear
Physics 22, 4 (1961), 579–588.

[29] Tanju Gleisberg, Stefan Höche, F Krauss, M Schönherr, S Schumann, F Siegert,
and J Winter. 2009. Event generation with SHERPA 1.1. Journal of High Energy
Physics 2009, 02 (2009), 007.

[30] Prem Gopalan, Wei Hao, David M Blei, and John D Storey. 2016. Scaling proba-
bilistic models of genetic variation to millions of humans. Nature Genetics 48, 12
(2016), 1587.

[31] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677v1 (2017).

[32] David Griffiths. 2008. Introduction to elementary particles. John Wiley & Sons.
[33] Ralf Herbrich, Tom Minka, and Thore Graepel. 2007. TrueSkill™: a Bayesian skill

rating system. In Advances in Neural Information Processing Systems. 569–576.
[34] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. O’Reilly Media,

Inc.
[35] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

Computation 9, 8 (1997), 1735–1780.
[36] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Sto-

chastic variational inference. The Journal of Machine Learning Research 14, 1
(2013), 1303–1347.

[37] Matthew D Hoffman and Andrew Gelman. 2014. The No-U-Turn sampler: adap-
tively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine
Learning Research 15, 1 (2014), 1593–1623.

[38] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer. 2015. FireCaffe:
near-linear acceleration of deep neural network training on compute clusters.
ArXiv e-prints (Oct. 2015). arXiv:cs.CV/1511.00175

[39] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).

[40] Viacheslav Khomenko, Oleg Shyshkov, Olga Radyvonenko, and Kostiantyn
Bokhan. 2016. Accelerating recurrent neural network training using sequence
bucketing and multi-gpu data parallelization. In 2016 IEEE First International
Conference on Data Stream Mining & Processing (DSMP). IEEE, 100–103.

[41] D. P. Kingma and J. Ba. 2014. Adam: AMethod for Stochastic Optimization. ArXiv
e-prints (Dec. 2014). arXiv:cs.LG/1412.6980

[42] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational Bayes.
arXiv preprint arXiv:1312.6114 (2013).

[43] Kunitaka Kondo. 1988. Dynamical likelihood method for reconstruction of events
withmissingmomentum. I. Method and toymodels. Journal of the Physical Society
of Japan 57, 12 (1988), 4126–4140.

[44] Thorsten Kurth, Sean Treichler, Joshua Romero,MayurMudigonda, Nathan Luehr,
Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, Prabhat, and Michael Houston. 2018. Exascale Deep Learning for Climate
Analytics. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press, Piscataway,
NJ, USA, Article 51, 12 pages. http://dl.acm.org/citation.cfm?id=3291656.3291724

[45] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas,
Md Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji,
Mikhail Smorkalov, et al. 2017. Deep learning at 15PF: supervised and semi-
supervised classification for scientific data, In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
ArXiv e-prints, 7. arXiv:1708.05256

[46] Tuan Anh Le. 2015. Inference for higher order probabilistic programs. Masters
thesis, University of Oxford (2015).

[47] Tuan Anh Le, Atılım Güneş Baydin, and Frank Wood. 2017. Inference Com-
pilation and Universal Probabilistic Programming. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS) (Pro-
ceedings of Machine Learning Research), Vol. 54. PMLR, Fort Lauderdale, FL, USA,
1338–1348.

[48] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[49] Mario Lezcano Casado, Atılım Güneş Baydin, David Martinez Rubio, Tuan Anh
Le, Frank Wood, Lukas Heinrich, Gilles Louppe, Kyle Cranmer, Wahid Bhimji,
Karen Ng, and Prabhat. 2017. Improvements to Inference Compilation for Proba-
bilistic Programming in Large-Scale Scientific Simulators. In Neural Information
Processing Systems (NIPS) 2017 workshop on Deep Learning for Physical Sciences
(DLPS), Long Beach, CA, US, December 8, 2017.

[50] Linux man-pages project. 2019. Linux Programmer’s Manual. http://man7.org/
linux/man-pages/index.html

[51] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Karna, Daina Moise, Simon J. Pennycook,
Kristyn Maschoff, Jason Sewall, Nalini Kumar, Shirley Ho, Mike Ringenburg,
Prabhat, and Victor Lee. 2018. CosmoFlow: Using Deep Learning to Learn
the Universe at Scale. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press,
Piscataway, NJ, USA, Article 65, 11 pages. https://dl.acm.org/citation.cfm?id=
3291743

[52] Amrita Mathuriya, Thorsten Kurth, Vivek Rane, Mustafa Mustafa, Lei Shao,
Debbie Bard, Victor W Lee, et al. 2017. Scaling GRPC Tensorflow on 512 nodes
of Cori Supercomputer. In Neural Information Processing Systems (NIPS) 2017
workshop on Deep Learning At Supercomputer Scale, Long Beach, CA, US, December
8, 2017.

[53] Sam McCandlish, Jared Kaplan, and et.al Amodei, Dario. 2018. An Empirical
Model of Large-Batch Training. arXiv preprint arXiv:1812.06162v1 (2018).

[54] Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U.-Chupala, Yoshiki Tanaka,
and Yuichi Kageyama. 2018. ImageNet/ResNet-50 Training in 224 Seconds. CoRR
abs/1811.05233 (2018). arXiv:1811.05233 http://arxiv.org/abs/1811.05233

[55] T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. 2018.
/Infer.NET 0.3. Microsoft Research Cambridge. http://dotnet.github.io/infer.

[56] Radford M Neal. 1993. Probabilistic inference using Markov chain Monte Carlo
methods. Technical Report CRG-TR-93-1. Dept. of Computer Science, University
of Toronto.

[57] Radford M. Neal. 2011. MCMC using Hamiltonian dynamics. In Handbook of
Markov Chain Monte Carlo, Steve Brooks, Andrew Gelman, Galin Jones, and
Xiao-Li Meng (Eds.). Vol. 2. 2.

[58] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOG-
WILD!: A Lock-free Approach to Parallelizing Stochastic Gradient Descent. In
Proceedings of the 24th International Conference on Neural Information Processing
Systems (NIPS’11). Curran Associates Inc., USA, 693–701. http://dl.acm.org/
citation.cfm?id=2986459.2986537

[59] X. Pan, J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. 2017. Revisiting Dis-
tributed Synchronous SGD. ArXiv e-prints (Feb. 2017). arXiv:cs.DC/1702.05800

[60] George Papamakarios and Iain Murray. 2016. Fast ϵ -free Inference of Simulation
Models with Bayesian Conditional Density Estimation. In Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett (Eds.). Curran Associates, Inc., 1028–1036.

[61] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop: The
Future of Gradient-based Machine Learning Software and Techniques, Long Beach,
CA, US, December 9, 2017.

[62] Michael E Peskin. 2018. An introduction to quantum field theory. CRC Press.
[63] A Salam. 1968. Proceedings of the Eighth Nobel Symposium on Elementary

Particle Theory, Relativistic Groups, and Analyticity, Stockholm, Sweden, 1968.
(1968).

[64] Christopher J. Shallue, Jaehoom Lee, Joseph Antognini, Jascha Sohl-Dickstein,
Roy Frostig, and George E. Dahl. 2018. Measuring the Effects of Data Parallelism
on Neural Network training. arXiv preprint arXiv:1811.03600v2 (2018).

[65] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. 2017. Don’t
Decay the Learning Rate, Increase the Batch Size. arXiv preprint arXiv:1711.00489
(2017).

[66] T. Smith, N. Maire, A. Ross, M. Penny, N. Chitnis, A. Schapira, A. Studer, B. Genton,
C. Lengeler, F. Tediosi, and et al. 2008. Towards a comprehensive simulation
model of malaria epidemiology and control. Parasitology 135, 13 (2008), 1507–1516.
https://doi.org/10.1017/S0031182008000371

[67] Sam Staton, FrankWood, Hongseok Yang, Chris Heunen, and Ohad Kammar. 2016.
Semantics for probabilistic programming: higher-order functions, continuous
distributions, and soft constraints. In 2016 31st Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). IEEE, 1–10.

[68] John Sterman, Thomas Fiddaman, Travis Franck, Andrew Jones, Stephanie Mc-
Cauley, Philip Rice, Elizabeth Sawin, and Lori Siegel. 2012. Climate interactive: the

13

https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
http://arxiv.org/abs/physics.ins-det/1804.06913
http://arxiv.org/abs/cs.CV/1511.00175
http://arxiv.org/abs/cs.LG/1412.6980
http://dl.acm.org/citation.cfm?id=3291656.3291724
http://arxiv.org/abs/1708.05256
http://man7.org/linux/man-pages/index.html
http://man7.org/linux/man-pages/index.html
https://dl.acm.org/citation.cfm?id=3291743
https://dl.acm.org/citation.cfm?id=3291743
http://arxiv.org/abs/1811.05233
http://arxiv.org/abs/1811.05233
http://dl.acm.org/citation.cfm?id=2986459.2986537
http://dl.acm.org/citation.cfm?id=2986459.2986537
http://arxiv.org/abs/cs.DC/1702.05800
https://doi.org/10.1017/S0031182008000371

Baydin, Shao, Bhimji, Heinrich, Meadows, Liu, Munk, Naderiparizi, Gram-Hansen, Louppe, Ma, Zhao, Torr, Lee, Cranmer, Prabhat, Wood

C-ROADS climate policy model. System Dynamics Review 28, 3 (2012), 295–305.
[69] Michael Teng and Frank Wood. 2018. Bayesian Distributed Stochastic Gradient

Descent. In Advances in Neural Information Processing Systems. 6380–6390.
[70] Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and

David M Blei. 2016. Edward: A library for probabilistic modeling, inference, and
criticism. arXiv preprint arXiv:1610.09787 (2016).

[71] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood.
2018. An Introduction to Probabilistic Programming. arXiv e-prints, Article
arXiv:1809.10756 (Sep 2018). arXiv:stat.ML/1809.10756

[72] Martinus Veltman et al. 1972. Regularization and renormalization of gauge fields.
Nuclear Physics B 44, 1 (1972), 189–213.

[73] S Weinberg. 1967. Phys. Rev. Lett 19 (1967), 1264.

[74] David Wingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Lightweight
implementations of probabilistic programming languages via transformational
compilation. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. 770–778.

[75] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[76] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Large batch training of convo-
lutional networks. arXiv preprint arXiv:1708.03888 (2017).

[77] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu. 2016.
Asynchronous Stochastic Gradient Descent with Delay Compensation. ArXiv
e-prints (Sept. 2016). arXiv:cs.LG/1609.08326

14

http://arxiv.org/abs/stat.ML/1809.10756
http://arxiv.org/abs/cs.LG/1609.08326

	Abstract
	1 Introduction
	1.1 Contributions

	2 Probabilistic programming for particle physics
	3 State of the art
	3.1 Probabilistic programming
	3.2 Distributed training for deep learning

	4 Innovations
	4.1 PPX and pyprob: executing existing simulators as probabilistic programs
	4.2 Efficient Bayesian inference
	4.3 Dynamic neural network architecture
	4.4 Training of dynamic neural networks

	5 Systems and Software
	5.1 Cori
	5.2 Edison
	5.3 Diamond cluster
	5.4 Particle physics simulation software

	6 Experiments and Results
	6.1 Single node performance
	6.2 Multi-node performance
	6.3 Large scale training on Cori and Edison
	6.4 Inference and science results

	7 Discussion
	7.1 Time to solution: trade-off between throughput and convergence
	7.2 Load balancing

	8 Science implications and outlook
	9 Conclusions
	Acknowledgments
	References

