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Figure 1: Divide between formal and informal settlements in Kibera, Nairobi. Copyright Unequal Scenes and Johnny Miller.

ABSTRACT
Informal settlements are home to the most socially and economi-
cally vulnerable people on the planet. In order to deliver effective
economic and social aid, non-government organizations (NGOs),
such as the United Nations Children’s Fund (UNICEF), require de-
tailed maps of the locations of informal settlements. However, data
regarding informal and formal settlements is primarily unavailable
and if available is often incomplete. This is due, in part, to the cost
and complexity of gathering data on a large scale. To address these
challenges, we, in this work, provide three contributions. 1) A brand
new machine learning data-set, purposely developed for informal
settlement detection. 2) We show that it is possible to detect infor-
mal settlements using freely available low-resolution (LR) data, in
contrast to previous studies that use very-high resolution (VHR)
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satellite and aerial imagery, something that is cost-prohibitive for
NGOs. 3) We demonstrate two effective classification schemes on
our curated data set, one that is cost-efficient for NGOs and another
that is cost-prohibitive for NGOs, but has additional utility. We in-
tegrate these schemes into a semi-automated pipeline that converts
either a LR or VHR satellite image into a binary map that encodes
the locations of informal settlements.
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1 INTRODUCTION
The United Nations (UN) state that inhabitants of settlements that
meet any of the following criteria are defined to be living in an
informal settlement [24]:

(1) Inhabitants have no security of tenure vis-à-vis the
land or dwellings they inhabit, withmodalities rang-
ing from squatting to informal rental housing.

(2) The neighborhoods usually lack, or are cut off from,
basic services and city infrastructure.

(3) The housing may not comply with current plan-
ning and building regulations, and is often situated
in geographically and environmentally hazardous
areas.

Slums, an example of informal settlements, are the most deprived
and excluded form of informal settlements. They can be character-
ized by poverty and large agglomerations of dilapidated housing,
located in the most hazardous urban land, near industries and
dump sites, in swamps, degraded soils and flood-prone zones [16].
Slum dwellers are constantly exposed to eviction, disease and
violence [22], which stems from and leads to more severe eco-
nomic and social constraints [27]. Although informal settlements
are well studied in the humanities and remote sensing communi-
ties [11, 13, 14, 24, 27] in machine learning, only a small amount
of research has been conducted on informal settlements, with all
of that research using VHR and high resolution(HR) satellite im-
agery [18, 19, 26], a cost prohibitive option for many NGOs and gov-
ernments of developing nations. In contrast, there is an abundance
of freely available and globally accessible LR satellite imagery, pro-
vided by the European Space Agency (ESA), which provides updated
imagery of the entire land mass of the Earth every 5 days [7, 8, 28].
To the authors knowledge, no previous approaches have used LR
imagery.

The ability to map and locate these settlements would give orga-
nizations such as UNICEF and other NGOs the ability to provide
effective social and economic aid [20]. This in turn would enable
those communities to evolve in a sustainable way, allowing the
people living in those environments to gain a much better qual-
ity of life addressing multiple of the UN sustainable development
goals [25]. These goals aim to eliminate poverty, increase good
health and well-being, provide quality education, clean water and
sanitation, affordable and clean energy, sustainable work and eco-
nomic growth, access to industry, innovation and infrastructure.

However, solving this problem is challenging due to several
factors. 1) It requires collaboration among multiple parties: the
NGOs, local government, the remote sensing and machine learning
communities. 2) The locations and distribution of these informal
settlements have yet to be mapped thoroughly on the ground or
aerially, as the mapping demands dedicated human and financial
resources. This often leads to partially completed, or completely
un-annotated data-sets. 3) Informal settlements tend to grow spo-
radically (both in space and time), which adds an additional layer
of complexity. 4) Even though we have access to satellite imagery
for the entire globe, much of this raw data is not in a usable format
for machine learning frameworks, making it difficult to extract ac-
tionable insights at scale [29]. 5) There may be no local government

Figure 2: Two images of the same informal settlement in
Kibera, representing the difference between VHR and LR
imagery. Left: A DigitalGlobe 30cm VHR image. Right: The
Sentinel-2 10m resolution image.

structure in a particular settlement, which can inhibit our ability
to gather data quickly. and make it difficult to extract good quality
ground truth data, see Section 2.

In order to address these challenges, in this work we propose
a semi-automated framework that takes a satellite image, directly
extracted in its raw-user form and outputs a trained classifier that
produces binary maps highlighting the locations of informal settle-
ments.

Our first approach, the cost-effective approach, takes advantage
of the pixel level contextual information by training a classifier to
learn a unique spectral signal for informal settlements. When we
require finer grained features, such as the roof size, or the density
of the surrounding settlements to determine whether or not there
exists an informal settlement, we demonstrate a second approach
that uses a semantic segmentation neural network to extract these
features, the cost-prohibitive solution. See Section 4.

To ensure that this work can be applied in the field, we have had
an active partnership with UNICEF, to understand what we can
do to facilitate their needs further and how we can facilitate the
needs of other NGOs. Because of this, we focused on developing a
system that will work in a computationally efficient and monetary
effective manner. Our main approach runs efficiently on a laptop,
or desktop CPU and is cost-effective as we only use freely available,
openly accessible LR satellite imagery, rather than VHR imagery
which can cost hundreds-of-thousands of dollars.
Within this paper we make the following contributions:

• We introduce and extensively validate two machine
learning based approaches to detect and map infor-
mal settlements. One is cost-effective, the other is
cost-prohibitive, but is required when contextual
information is needed.

• We demonstrate for the first-time that informal
settlements can be detected effectively using only
freely and openly accessible LR satellite imagery.

• We release to the public two informal settlement
benchmarks for LR and VHR satellite imagery, with
accompanying ground truths.

• We provide all source code and models.



In Section 2we provide details of the data used and the challenges in-
volved in collecting it. In Section 3we provide a condensed overview
of related work and current approaches. In Section 4 we introduce
details of our methodologies and present the results of our contri-
butions in Section 5. Finally we conclude and present future work
in Section 6.

2 DATA ACQUISITION
In this work we use a combination of satellite imagery and on-
the-ground measurements. However, to take advantage of machine
learning frameworks we require an absolute ground truth, which
facilitates robust training and validation. Ground truth data for this
project was very sparse, in part due to the difficulties and financial
costs in obtaining the data across vast regions of developing nations.
This meant that much of the accessible data was incomplete. Even
when the data was available, it was not necessarily in a workable
format; either it was provided as part of a PDF, with no external
meta-data, or it was simply in an inaccessible format. As part of
this work we fused these data sets together, to generate usable
data sets that can be used by the community for developing new
machine learning models. Data sets can be found here: https://
frontierdevelopmentlab.github.io/informal-settlements/.

2.1 Satellite Data
In the last ten-years there has been an exponential increase in the
number of satellites being launched due to the increase in commer-
cial interests. This has accelerated the amount of satellite imagery
available and continues to lower the cost of gaining access to VHR
data. However, VHR imagery can still cost hundreds, to thousands,
to hundreds-of-thousands of dollars per image, or collection of im-
ages and is typically only available through commercial providers.
Institutions such as the National Aeronautics and Space Adminis-
tration (NASA) and ESA do provide a multitude of freely available
multi-spectral imagery, but this is typically of a much lower res-
olution, approximately 10 − 20m resolution per pixel, and many
of the fine grained features are blurred, see Figure 2. This makes
it difficult to use a deep learning approach effectively to extract
optical features that would be required for distinguishing informal
and formal settlements, whereas the VHR imagery, less than 1m res-
olution per pixel, enables us to do this, especially when we require
contextual information, Section 4.

2.1.1 Sentinel-2. The Sentinel-2 mission is part of the Coperni-
cus program by the European Commission (EC). A global earth
observation service addressing six thematic areas: land, marine,
atmosphere, climate change, emergency management and security
through its Sentinel missions. ESA is responsible for the observa-
tion infrastructure of the Sentinels [4]. The data provided by the
Sentinels has a free and open data policy implying that the data
from the Sentinel missions is available free of charge to everyone.
The ease of data access and use, allows all users from the pub-
lic, private or research communities to reap the socio-economic
benefits of such data [28]. A Sentinel-2 image is provided to the
end user at Level-1C [9] and has already gone through a series
of pre-processing steps before it reaches the end user. However,
these images have not been corrected for atmospheric distortions.
This correction requires additional processing time to convert the

Figure 3: Image provided by the European Space Agency.Top:
Represents the Sentinel-2 Level-1C uncorrected image. Bot-
tom: Represents the Sentinel-2 Level-2A corrected image.
This lower image requires an additional time-consuming
computational step to correct for atmospheric distortions
in the spectral data. Our method does not require the use
of this pre-processing step.

image into Level-2A product, resulting in bottom of the atmosphere
reflectances, see Figure 3 for a comparison. Within this work we
directly use the Level-1C images for our computationally and cost
efficient approach, mitigating the need to do the computationally
costly processing.

Multi-spectral Data. The Sentinel-2 satellites map the entire
global landmass every 5-days at various resolutions of 10 to 60m per
pixel, which means that each pixel represents an area of between
10m2 to 60m2. At each resolution, spectral information at the top
of the atmosphere (TOA) is provided, creating a total of 13 spectral
bands covering the visible, near infrared (NIR) and the shortwave
infrared (SWIR) part of the electromagnetic spectrum [6, 9, 30].
Although there are 13 spectral bands in total, we exclude bands 1, 9
and 10 as they interfere strongly with the atmosphere due to their
60m resolution. This means that we only use the bands 2, 3, 4, 5, 6,
7, 8, 8A, 11, 12 as these bands have minimal interactions with the at-
mosphere and are provided at either a 10m or 20m spatial resolution.

2.1.2 Very-High-Resolution Satellite Images. In addition to freely
available multi-spectral LR satellite images, we use VHR images
with a resolution of up to 30cm per pixel, kindly provided by Digi-
talGlobe through Satellite Applications Catapult. See Figure 2 to
see the difference in resolution between Sentinel-2 and VHR im-
agery.We emphasize that VHR imagery is only used in the cost-
prohibitive method.

2.2 Annotated Satellite Imagery
We have annotated satellite imagery for the locations of informal
settlements in parts of Kenya, South Africa, Nigeria, Sudan, Colom-
bia and Mumbai. We then project these masks on to the satellite
image and extract the necessary spectral information at those spe-
cific points, see Figure 4 for a example of an annotated ground truth
map. We have open sourced the necessary code to do this here:
https://frontierdevelopmentlab.github.io/informal-settlements/.

https://frontierdevelopmentlab.github.io/informal-settlements/
https://frontierdevelopmentlab.github.io/informal-settlements/
https://frontierdevelopmentlab.github.io/informal-settlements/


Figure 4: An example of annotated ground truth map. Left:
The city isMumbai, the white dots represent informal settle-
ments and the black dots represent the environment. Right:
The Sentinel-2 image of Mumbai.

3 RELATEDWORK
Recent publications applying machine learning to remote sensing
data, in particular to satellite imagery, that have focused on de-
tecting, or mapping informal settlements [1, 16–19, 26, 29] have
typically been trained on a specific region, or feature in combina-
tion with VHR [12, 17, 23, 23]. The approaches most in spirit to
our own are [15, 26, 29]. Varshney et al. focus on detecting roofs in
Eastern Africa using a template matching algorithm and random
forest, they take advantage of Google Earths’ API to extract high
resolution imagery, which although is free to researchers, is not
openly available to everyone. Xie et al. and Jean et al. use a mixture
of data sources and transfer learning across different data sets to
generate poverty maps by taking advantage of night time imagery
through the National Oceanic and Atmospheric Administration
(NOAA) and daytime imagery through Google Earths’ API. How-
ever, to our knowledge there exists no previous work on predicting
informal settlements solely from LR data, or predicting informal
settlements in the way that we present here. This inhibits our ability
to benchmark against previous methods. Thus, by providing the
data sets and the baselines in this paper, we provide a robust way
to compare the effectiveness of any future approaches and facilitate
the creation of new machine learning methodologies.

4 METHODS
In this section, we describe our approaches for detecting and map-
ping informal settlements. We introduce two different methods;
a cost-efficient method and cost-prohibitive method. Our first
method trains a classifier to learn what the spectrum of an in-
formal settlement is, using LR freely available Sentinel-2 data. To
do this, we employ a pixel-wise classification, where the system
learns whether or not a 10-band spectra is associated to an informal
settlement or the environment, which encompasses everything that

is not an informal settlement. Our second method, is a semantic
segmentation deep neural network that uses VHR satellite imagery,
which is useful when informal settlements do not have unique spec-
tra when compared to the environment, like those in Sudan, see
Figure 5.

4.1 Cost Effective Method
Canonical Correlation Forests (CCFs) [21] are a decision tree
ensemble method for classification and regression. CCFs are the
state-of-the-art random forest technique, which have shown to
achieve remarkable results for numerous regression and classifi-
cation tasks [21]. Individual canonical correlation trees are binary
decision trees with hyper-plane splits based on local canonical cor-
relation coefficients calculated during training. Like most random
forest based approaches, CCFs have very few hyper-parameters
to tune and typically provide very good performance out of the
box. All that has to be set is the number of trees, ntr ees . For CCFs,
setting ntr ees = 15 provides a performance that is empirically
equivalent to a random forest that has ntr ees = 500 [21], meaning
CCFs have lower computational costs, whilst providing better clas-
sification. CCFs work by using canonical correlation analysis (CCA)
and projection bootstrapping during the training of each tree, which
projects the data into a space that maximally correlates the inputs
with the outputs. This is particularly useful when we have small
data-sets, like in our case, as it reduces the amount of artificial ran-
domness required to be added during the tree training procedure
and improves the ensemble predictive performance [21].

The computational efficiency aspects of CCFs and their suitabil-
ity to both small and large data-sets, makes them ideal for detecting
informal settlements for three reasons. First, many of the organisa-
tions that we aim to help will not have access to a large amount of
compute resources, therefore computational efficiency is important.
Second, to run the CCFs for both training and prediction, all that
has to be called is one function. This ensures that the end user
does not need to be an expert in ensemble methods and makes the
method akin to plug and play. Finally, some of our ground truth
data sets are relatively small, which means that we must use the
data as efficiently as possible, which CCFs allow us to do. When
VHR and computational cost are not a restriction we can employ a
deep learning approach using convolution neural networks (CNN)
to detect informal settlements.

4.2 Cost Prohibitive Method
Since informal settlements can also be classified by the rooftop size
and the surrounding building density, we employ a state-of-the-art
semantic segmentation neural network on optical (RGB) VHR satel-
lite imagery to detect these contextual features. These contextual
features are important when it is not possible to distinguish infor-
mal settlements from the environment by spectral signal in the
same region. An example of such an informal settlement is shown
in Figure 5. We see that the informal settlements in a rural region
of Al Geneina, Sudan have a very low building density, and also
the roof tops of both formal and informal settlements are built out
of concrete, meaning they have the same spectral signal. This is in
contrast to the dense slums in Nairobi and Mumbai.



Figure 5: A VHR image comparing an informal, left and for-
mal settlement, right, in Al Geneina, Sudan. The main dis-
tinguishing feature is the wider contextual information, as
the material spectrum’s are the same.

4.2.1 Encoder-Decoder with Atrous Separable Convolution. For the
task of semantic segmentation of informal settlements we use the
DeepLabv3+ encoder-decoder architecture. DeepLabv3+ [3] is a
deep CNN that extends the prior DeepLabv3 network [2] with a
decoder module to refine the segmentation results of the previous
encoder-decoder architecture particularly at the object boarders.
The DeepLabv3 architecture uses Atrous Spatial Pyramid Pool-
ing (ASPP) with Atrous convolutions to explicitly control the reso-
lution at which feature responses are computed within the CNN.
This ASPP module is augmented with image level features to cap-
ture longer range information. We use a Xception 65 network back-
bone in the encoder-decoder architecture. The beneficial use of
this Xception model together with applying depth wise separable
convolution to ASPP and the decoder modules have been shown
in [3].

4.2.2 Implementation details. We train the entire network end-
to-end with the usual back-propagation algorithm using eight
Tesla V100 GPUs with 16 GBs of memory each. We initialize the
layer weights using those from the pre-trained PASCAL VOC 2012
model [10]. We then fine-tune in turn the finer strides on the train-
ing/validation data. We train our deep network with a batch size of
32, an initial learning rate of 0.001 and a learning rate decay factor
of 0.1 every 2.000 steps until convergence. Our experiments are
based on a single-scale evaluation. All other hyper-parameters are
the same as in the DeepLabv3+ model [3].

5 RESULTS
Experimental Setup. For each region we have a 10-20m resolu-

tion Sentinel-2 image, the corresponding VHR 30-50cm resolution
image and the ground truth annotations. We have ensured that the
images and annotations are aligned in space and time to reduce
any additional noise in the data. When training and validating a
model on the same region we use a 80-20 split. We ensure that
each class contains the same number of points, we then randomly
sample 80% of each class to generate the training data and then use
the remaining 20% of each class to construct our test set, which is
comprised of a different set of points. We then center the training
data (testing data accordingly) to have a mean of zero and standard
deviation of one. We set the ntr ees = 10 for training the CCF. For

validating our methods we report both pixel accuracy, and mean
intersection over union (IoU). We use the standard definition of
mean IOU,meanIOU = 1

nclass
tii

(ti+
∑
j nji−nii )

and pixel classifica-

tion, pxclass =
∑
i nii
ti , where nclass is the total number of classes,

ni j is the number of pixels of class i predicted to belong to class
j, and ti is the total number of pixels of class i in ground truth
segmentation.

We provide a comparison of both the pixel-wise classification
with CCFs and the contextual classification with CNNs for the
detection and mapping of informal settlements, see Table 1. The
CCFs trained solely on freely available and easily accessible low-
resolution data perform well, although they are unable to match the
performance of the CNN trained on VHR imagery, except for Kibera.
Figure 6 shows the predictions of both methods and the ground
truth annotations. Despite having access to very high resolution
data, the CNN still manages to miss-classify structural elements
of the informal settlements in Kibera. Whereas the CCF, although
more granular, incorporates the full structure of the informal set-
tlement in Kibera via only the spectral information.

5.0.1 Generalizability. To demonstrate the adaptability of our ap-
proach we train each model on different parts of the world and use
that model to perform predictions on other unseen regions across
the globe. For this paper we train two models, one on Northern
Nairobi, Kenya and another on Medellin, Colombia. The results can
be found in Table 2. Even though we only have a small amount of
data, we are able to demonstrate that our models can generalize
moderately well, even with data that is noisy and partially incom-
plete. We provide several more results in the appendix A of this
paper.

Pixel Acc. Mean IOU

Region CCF CNN CCF CNN

Kenya, Northern Nairobi 69.4 93.1 62.0 80.8
Kenya, Kibera 69.0 78.2 73.3 65.5
South Africa, Capetown* 92.0 - 33.2 -
Sudan, El Daien 78.0 86.0 61.3 73.4
Sudan, Al Geneina 83.2 89.2 35.7 76.3
Nigeria, Makoko* 76.2 87.4 59.9 74.0
Colombia, Medellin* 84.2 95.3 74.0 83.0
India, Mumbai* 97.0 - 40.3 -

Table 1: Pixel accuracy and mean IOU (%) results for infor-
mal settlement detection using the CCF pixel-wise classifi-
cation and the contextual classification with CNNs. CCFs
are trained and tested on low resolution imagery, CNNs are
trained and tested on VHR imagery. *Represents that the
ground truth annotations are less than 75% complete for the
region.



Figure 6: Predictions of informal settlements (white pixels) inKibera, Nairobi. Left:TheCCFprediction of informal settlements
in Kibera on low-resolution Sentinel-2 spectral imagery. Middle: Deep learning based prediction of informal settlements in
Kibera, trained on VHR imagery. Right: The ground truth informal settlement mask for Kibera.

Pixel Acc. Mean IOU

Region NN M NN M

Kenya, Northern Nairobi 69.4 55.0 62.0 54.4
Kenya, Kibera 67.3 63.8 54.1 56.0
South Africa, Capetown* 41.3 71.5 43.1 32.0
Sudan, El Daien 14.2 1.1 37.9 34.0
Sudan, Al Geneina 27.1 6.0 34.9 41.0
Nigeria, Makoko* 59.0 77.0 37.8 34.6
Colombia, Medellin* 65.0 84.2 46.9 74.0
India, Mumbai* 37.9 63.0 32.4 34.4

Table 2: Pixel accuracy and mean IOU (%) results for in-
formal settlement detection using pixel-wise classification
with CCFs trained on a particular region and testing on all
other regions. Results are for a model trained on Northern
Nairobi (NN) and a model trained on Medellin (M). * Rep-
resents that the ground truth annotations are less than 75%
complete for the region.

6 CONCLUSIONS AND FUTUREWORK
Conclusion. In this work we have composed a series of anno-

tated ground truth data-sets and have provided for the first time
benchmarks for detecting informal settlements. We have provided
a comprehensive list of the challenges faced in mapping informal
settlements and some of the constraints faced by NGOs. In addi-
tion to this, we have proposed two different methods for detecting
informal settlements, one a cost-effective method, the other a cost-
prohibitive method. The first method used computationally efficient
CCFs to learn the spectral signal of informal settlements from LR
satellite imagery. The second used a CNN combined with VHR
satellite imagery to extract finer grained features. We extensively
evaluated the proposed methods and demonstrated the general-
ization capabilities of our methods to detect informal settlements
not just in a local region, but globally. In particular, we demon-
strated for the first time that informal settlements can be detected
effectively using only freely and openly accessible multi-spectral
low-resolution satellite imagery.

Future work. Because of the uncertainties within the ground
truth annotations and the differences in informal settlements across
the world, we believe that this problem would be very useful for
testing transfer learning and meta-learning approaches. In addition
to this, Bayesian approaches would enable us to characterize these

uncertainties via probabilistic models. This would provide an effec-
tive way to create adaptable models that learn what it means for
an informal settlement to be informal, as the model absorbs new
information.

It is also interesting to note that a 1 km2 area containing informal
settlements could house up to 129089 people [5] and so each pixel
could represent up to 13 people 1. This therefore allows us to also
add population estimates to our maps, which UNICEF state is also
crucial. This would enable governments and NGOs to understand
how much infrastructure is required and how much aid needs to
be provided. Although we could have added population estimates
in this current work, we have chosen to omit them as it would be
irresponsible of us to provide estimates when not enough ground
truth data exists, regarding average population numbers in informal
settlements. We are actively working with UNICEF to gather more
ground truth data for this and additional annotations for informal
settlements, as UNICEF would actively like to deploy a system like
the one that we have developed here to provide both mapping and
population estimates of rural and urban informal settlements.
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A INFORMAL SETTLEMENT
CLASSIFICATION RESULTS

In this section we provide all results generated by the CCF on
all informal settlement data-sets at our disposal and provides re-
sults in terms of two metrics; pixel-wise classification and mean
intersection-over-union.We present two sets of results for Capetown.

• Capetown with Ground Truth (CapetownGT) - This repre-
sents around 20km2 region of Capetown (11% of the city).
This data is annotated and it was used in the main paper.

• Capetown - This represents the whole of Capetown, how-
ever, we only have annotations for the region mentioned
above (CapetownGT).



Country Colombia India Kenya Nigeria South Africa Sudan
City Medellin Mumbai N. Nairobi Kibera Kianda Mokako Capetown CapetownGT AlGeneina ElDaein

Model Mumbai

Informal 78.35 97.18 71.44 74.84 89.23 94.81 80.88 89.10 21.00 10.96
Environment 36.32 95.92 43.37 51.65 31.33 28.53 56.45 43.11 68.19 83.71

Model Capetown

Informal 96.86 98.00 99.21 96.52 100.00 99.73 98.77 99.61 99.99 99.90
Environment 9.80 46.97 9.07 10.12 4.03 7.27 96.33 15.22 0.23 0.10

Model CapetownGT

Informal 83.77 73.94 93.59 82.16 96.13 95.32 84.78 92.34 99.48 90.82
Environment 51.69 85.41 40.25 45.33 22.23 24.60 82.68 93.33 2.53 5.99

Model N. Nairobi

Informal 64.65 37.91 69.45 67.63 90.33 58.55 36.06 41.33 27.07 14.18
Environment 63.64 62.44 69.27 73.44 50.75 53.85 75.21 81.57 68.77 89.17

Model Kibera

Informal 48.23 40.82 63.65 67.84 79.56 57.71 46.50 45.07 30.96 31.31
Environment 72.04 27.18 76.56 75.56 67.73 58.38 54.76 55.92 62.13 65.53

Model Kianda

Informal 45.23 43.18 62.57 61.09 90.97 46.64 24.45 26.79 68.75 53.73
Environment 82.06 60.65 85.33 83.49 75.48 62.19 77.23 86.27 36.50 57.57

Model AlGeneina

Informal 81.21 66.80 80.73 79.76 85.36 56.07 52.94 60.52 83.17 94.68
Environment 46.79 48.97 49.71 31.87 17.26 38.46 76.21 63.86 79.43 5.25

Model ElDaein

Informal 24.07 9.50 46.58 54.11 71.82 8.37 29.90 25.65 68.52 78.16
Environment 76.61 40.11 67.18 71.47 71.20 85.19 48.91 61.22 30.61 71.65

Model Mokako

Informal 17.33 69.43 10.67 14.15 13.54 76.27 35.60 34.76 5.53 10.57
Environment 85.22 39.06 89.91 94.07 94.37 80.84 60.91 61.89 92.97 88.51

Model Medellin

Informal 84.06 62.95 54.10 63.84 88.12 77.00 63.38 71.46 5.66 1.09
Environment 79.88 63.02 85.79 78.85 47.00 37.45 62.01 57.68 96.28 95.78

Table 3: Pixel classification scores. TheModel row represents the model that has been trained on the stated city and the
columns represent the city on which that trained model is making a prediction on.



Country Colombia India Kenya Nigeria South Africa Sudan
City Medellin Mumbai N. Nairobi Kibera Kianda Mokako Capetown CapetownGT AlGeneina ElDaein

Model Mumbai

Informal IOU 31.23 68.58 41.42 45.04 30.14 27.74 56.32 42.83 55.82 59.81
Environment IOU 42.45 12.17 16.08 40.91 29.50 41.21 1.82 6.15 9.84 8.04
Mean IOU 36.84 40.37 28.75 42.97 29.82 34.47 29.07 24.49 32.83 33.92

Model Capetown

Informal IOU 9.57 46.93 9.06 9.92 4.03 7.26 32.00 15.22 0.23 0.09
Environment IOU 44.07 7.53 15.20 37.97 26.14 37.11 1.44 4.74 21.95 30.96
Mean IOU 26.82 27.23 12.13 23.94 15.09 22.18 16.72 9.98 11.09 15.53

Model CapetownGT

Informal IOU 46.06 84.43 39.83 40.97 21.94 23.98 82.54 57.74 2.53 5.76
Environment IOU 51.03 17.16 20.20 42.36 29.22 40.19 4.60 8.81 22.33 29.34
Mean IOU 48.55 50.80 30.02 41.67 25.58 32.08 43.57 33.28 12.38 17.55

Model N. Nairobi

Informal IOU 50.26 60.77 80.99 61.79 49.14 43.86 74.67 78.82 57.08 64.38
Environment IOU 43.60 3.98 42.15 46.46 36.87 31.83 1.41 7.44 12.81 11.43
Mean IOU 46.93 32.38 61.57 54.12 43.00 37.84 38.04 43.13 34.95 37.90

Model Kibera

Informal IOU 51.83 26.49 72.33 78.51 63.33 47.37 54.42 54.16 52.05 50.09
Environment IOU 35.17 2.33 26.25 68.11 40.79 32.84 1.03 4.15 13.18 17.71
Mean IOU 43.50 14.41 49.33 73.31 52.06 40.11 27.73 29.16 32.61 33.90

Model Kianda

Informal IOU 58.10 59.17 80.38 68.05 68.33 48.09 76.57 82.69 33.56 47.67
Environment IOU 36.53 4.35 33.07 47.61 50.43 27.63 1.06 6.25 21.07 27.62
Mean IOU 47.31 31.76 56.72 57.83 59.38 37.86 38.81 44.47 27.31 37.65

Model AlGeneina

Informal IOU 40.99 48.26 48.19 28.51 16.44 30.98 75.80 62.40 41.20 5.12
Environment IOU 47.58 5.31 19.90 36.78 24.84 26.45 2.12 6.15 30.17 30.43
Mean IOU 44.29 26.79 34.04 32.64 20.64 28.71 38.96 34.28 35.69 17.78

Model ElDaein

Informal IOU 48.74 38.57 61.75 56.39 64.98 56.66 48.52 58.64 28.13 68.01
Environment IOU 18.36 0.65 15.55 36.33 38.86 6.59 0.58 2.56 19.73 54.78
Mean IOU 33.55 19.61 38.65 46.36 51.92 31.63 24.55 30.60 23.93 61.39

Model Mokako

Informal IOU 52.52 38.54 78.39 62.69 72.95 63.65 60.46 59.59 73.49 63.16
Environment IOU 14.48 4.69 6.61 12.84 11.61 56.05 0.90 3.55 4.42 8.42
Mean IOU 33.50 21.61 42.50 37.77 42.28 59.85 30.68 31.57 38.96 35.79

Model Medellin

Informal IOU 75.06 62.00 79.78 65.12 45.18 33.33 61.76 56.72 76.12 66.33
Environment IOU 72.73 6.71 29.03 46.84 34.41 36.01 1.64 6.46 4.99 0.99
Mean IOU 73.90 34.36 54.40 55.98 39.79 34.63 31.70 31.59 40.56 33.66

Table 4: Intersection Over Union (IOU) results. The Model row represents the model that has been trained on the stated city
and the columns represent the city on which that trained model is making a prediction on.



B VERY HIGH-RESOLUTION VS.
LOW-RESOLUTION IMAGES

Here we provide a comparison of differing image qualities, 50cm
VHR image provided by DigitalGlobe and 10m LR image freely

available via the Sentinel hub, for a subset of Kibera. In comparing
the two images it is clear to see why we must use the additional
spectral data contained within the LR images, if we are to extract
any useful information regarding whether or not that pixel contains
a settlement.



Figure 7: A very high-resolution (VHR) image of the Kibera slum. As depicted in Figures 2 and 5 in the main paper. A full
resolution excerpt of this VHR satellite imagery is shown in Figure 8.



Figure 8: A low-resolution Sentinel-2 image of the Kibera slum as used in this study. As depicted in Figure 2 and 5 from the
main paper.
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