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Abstract
Epidemiology simulations have become a funda-
mental tool in the fight against the epidemics of
various infectious diseases like AIDS and malaria.
However, the complicated and stochastic nature of
these simulators can mean their output is difficult
to interpret, which reduces their usefulness to poli-
cymakers. In this paper, we introduce an approach
that allows one to treat a large class of population-
based epidemiology simulators as probabilistic
generative models. This is achieved by hijack-
ing the internal random number generator calls,
through the use of an universal probabilistic pro-
gramming system (PPS). In contrast to other meth-
ods, our approach can be easily retrofitted to sim-
ulators written in popular industrial programming
frameworks. We demonstrate that our method
can be used for interpretable introspection and
inference, thus shedding light on black-box simu-
lators. This reinstates much needed trust between
policymakers and evidence-based methods.

1. Introduction
Ending the epidemics of AIDS, tuberculosis, malaria and
other infectious diseases by 2030 is a key target within the
Good Health & Well-Being section of the UN Sustainable
Development Goals (UN, 2017; 2018). However, despite
decades of substantial international efforts, these diseases
kill hundreds of million people a year. For example, malaria
still annually kills about a quarter of a million children under
the age of 5 in Africa alone.

To reach the WHO’s target of reducing malaria incidence
and mortality rates by at least 90% by 2030, policymakers
are increasingly turning to evidence-based methods, thus
oftentimes relying on computational simulations (WHO,
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2015). These simulations allow policymakers to infer criti-
cal information on disease dynamics and make predictions
about the impacts of policies before they are rolled out. This
frequently increases the effectiveness of interventions and
thus ultimately saves resources, or even lives. For example,
it has been shown that mass vaccination may be largely
ineffective in regions of large transmission rates, but may
play a crucial role in areas of low transmission (Cameron
et al., 2015).

Malaria epidemiology is governed by a complex set of
drivers, few of which can be understood in isolation
(Cameron et al., 2015; Autino et al.; Smith et al., 2008;
Bershteyn et al., 2018). These include within-host dynamics,
population-specific traits and even local geography. Com-
prehensive modeling of all of these components remains
challenging, particularly in a region-specific context. Com-
putational epidemiology simulators have to reflect these
complexities and are usually stochastic in nature. This can
make simulation output highly non-trivial to interpret, par-
ticularly when trying to draw desired inferences coupled
with observed data (Mwendera et al.; Ferris et al.).

In this paper, we introduce a novel method that allows
one to shed light on the inner workings of a large class
of population-based stochastic simulators. We achieve this
by extending the work of Baydin et al. (2018) by inter-
preting such population-based simulators as probabilistic
generative models within the framework of universal proba-
bilistic programming (UPP) (Le et al., 2017). To this end,
we hijack existing simulators by overriding their internal
random number generators. Specifically, by replacing the
existing low-level random number generator in a simulator
with a call to a purpose-built UPP “controller”, which can
thus control, track and manipulate the stochasticity of the
simulator.

This allows for a variety of tasks to be performed on the
hijacked simulator, such as running inference (by condition-
ing the values of certain draws and manipulating others),
uncovering stochastic structure, and automatically produc-
ing result summaries, such as establishing the probability of
different program paths/traces. By providing a common ab-
straction framework for different simulators, our approach
further allows for easy and direct comparison between re-
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lated or competing simulators, a characteristic that is valu-
able in the context of epidemiology simulators (Ferris et al.).
We provide a case study of the above in Section 4.

Our framework already supports application to simulators
written in 13 general-purpose programming languages, and
is easily extensible. This is crucial as, given the enormous
code size and complexity, rewriting epidemiology simula-
tors using a dedicated universal probabilistic programming
language, such as Pyro (Bingham et al., 2019), is often
infeasible.

In time, we hope our approach will play a critical role in
bringing recent advancements in probabilistic programming
to bear on the vast array of existing simulators used through-
out the sciences, thereby providing wide-ranging impacts
across a number of fields.

This paper first gives an overview of existing malaria simu-
lators (Section 2), and proceed by introducing the necessary
background on the pyprob framework and the concept of
universal probabilistic programming (Section 3). Our ap-
proach is then demonstrated and analysed in the context of
a malaria case study (Section 4).

2. Simulating Diseases
In-silico simulators have become a crucial tool in evidence-
based decision-making within a large number of disciplines,
including statistical physics (Landau & Binder, 2014), finan-
cial modeling (Jäckel, 2002), weather prediction (Evensen,
1994), epidemiology (Smith et al., 2008) and many oth-
ers. In many cases, simulation output can augment or even
replace real data that may otherwise be costly or even im-
possible to generate. Recent advances in hardware have
enabled simulations to model increasingly complex systems.
Epidemiology studies the prevalence and spreading of dis-
eases across populations. Recent advances in hardware have
enabled simulations to model the dynamics of infectious
diseases, such as malaria, in ever greater detail.

2.1. Epidemiology Simulators

Two the most advanced malaria simulators, namely
EMOD (Bershteyn et al., 2018) and OpenMalaria (Smith
et al., 2008), have proven to be particularly valuable to pol-
icymakers. OpenMalaria is based on microsimulations of
Plasmodium falciparum in humans and was originally de-
veloped to simulate the impacts of malaria vaccines within
simple villages or districts. Compared with OpenMalaria,
EMOD is able to simulate a variety of additional drivers,
including complex geographies complete with migration
and a large number of policy interventions. Both EMOD
and OpenMalaria are open source and implemented in C++.

3. Hijacking Simulators
Probabilistic programming (Gordon et al., 2014; Staton
et al., 2016; Kozen, 1979) can be used to express prob-
abilistic models and consequently perform automated in-
ference in these. Once a probabilistic model has been ex-
pressed in a probabilistic programming language, a wide
range of inference techniques, such as Markov chain Monte
Carlo (MCMC) (Geyer, 1992), black-box variational in-
ference (VI) (Ranganath et al., 2014) and amortized infer-
ence(Le et al., 2016), can be used by non-experts in an
automated fashion.

Hijacking a simulator describes the process by which
a simulator’s random number generators are replaced by
calls to external sampling procedures, which are controlled
by a probabilistic programming system (PPS). In practice,
this amounts to performing a small number of surgical
incisions into the simulator’s source code in order to re-
place built-in calls to random number generators. E.g.,
given a simulator written in C++/Boost (Schäling, 2011), a
Gaussian distribution object boost::normal is replaced with
the corresponding pyprob cpp distribution object, namely
pyprob cpp::distributions::Normal. Sampling from this dis-
tribution is then done by requesting the PPS to send a sample
back to the simulator.

The PPS and the simulator exchange xTensor objects1

through TCP or IPC using a generic FlatBuffers2 protocol.
On the PPS side, sampling is done using the deep learning
framework PyTorch (Paszke et al., 2017).

After a variable has been sampled, using
pyprob cpp::sample, it is sent by the PPS to the
simulator, at the same recording the simulator execution
trace as a side effect. This allows the PPS to construct
sample trace probabilities and other summary statistics (cf.
Section 4).

Finally, the entry point to the simulator, i.e., main in
C++, is replaced by a special forward call, in this case
pyprob cpp::forward. This allows the PPS to generate roll-
outs from the simulator remotely. A pictorial overview of
this process is depicted in Figure 3.

Population-based simulators create a trace per popula-
tion member, in contrast to event-based simulators that cre-
ate only a single trace per forward call (Baydin et al., 2018).
This means that, e.g., in OpenMalaria, a standard scenario
simulation rollout over the span of 3 years with a population
of size n = 5000 (Smith et al., 2008) will generate about
four terabytes of raw trace data. Unlike the simulator used

1https://xtensor.readthedocs.io/en/
latest/

2http://google.github.io/flatbuffers/

https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
http://google.github.io/flatbuffers/
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Simulator System
E.g Open Malaria

Specify Model
E.g. XML file  
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Condition on Observations
 P(x|y)

Output

PPS Hijacks 
RNG

PPS Performs Inference
Execute Simulator

Observations, or Collected 
Data

Figure 1. This flow-chart provides an overview of the process of
how our we hijack a generic population-based epidemiology simu-
lator, such as OpenMalaria, and how we modify the simulator to
to hijack the random number generator (RNG). It demonstrates
how information is exchanged between the simulator and the PPS.
Green represents events linked to the simulator, purple corresponds
to events occurring in the PPS and brown represents an external
processes.

by Baydin et al. (2018), this amount of data cannot feasibly
be kept in RAM, which makes a posteriori trace analysis
very inefficient. In order to deal with the shortcomings of
pyprob in a population-based simulator context, we there-
fore extend the framework to be able to do trace analysis on
the fly.

By extending pyprob to handle population-based simulators,
the PPS can now track all stochastic random variables that
are created within the simulator, which then allows us to
generate trace plots and path probabilities associated to the
execution paths of the program. The corresponding increase
of simulator transparency helps reinstate much needed trust
between policymakers and evidence-based methods.

4. Case Study: Ifakara, Tanzania
Ensemble methods are commonly used in statistics in or-
der to combine the predictive power of multiple models
(Cameron et al., 2015; Smith et al.). To this end, recent
work has attempted to characterise the similarities and dif-
ferences between two of the most advanced malaria epi-
demiology simulators, EMOD (Bershteyn et al., 2018) and
OpenMalaria (Smith et al., 2008). Evaluation is usually
done by comparing a number of output parameters across a
range of hand-crafted standard scenarios reflecting different
geographical locations across Africa (Smith et al.).

In the following, we illustrate how our method introduces
a novel introspection paradigm. By extracting trace graphs
from population-based simulators, policymakers can ask
specific questions about properties of the model trace flow
and not just the outcomes of the model, thus providing
additional interpretability to the decision-making process.
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Figure 2. Seasonal Entomological Inoculation Rate (EIR) for the
Ifakara scenario. Data is averaged over 30 day periods.

To illustrate the above, we present simulation output gener-
ated from a scenario resembling local conditions in the town
of Ifakara, Tanzania. Both EMOD and OpenMalaria are
configured to simulate a single population node of n = 100
and assume constant climatic conditions and no migration
over the simulation period of three years. Please refer to
Figure 2 for the seasonal Entomological Inoculation Rate
(EIR), a measure of infectivity.

We provide examples of the generated trace plots from the
connection between the simulator and the PPS in Figure 3.

We can see from the addressing schemes A1, . . . , AN (Ta-
bles 2 and 4) what physical events are connected to each
other and how outputs in EMOD are generated from a dif-
ferent set of procedures as compared to OpenMalaria. By
having access to such diagrams, users can internally evaluate
and scrutinize the decisions that the simulator is making.

This is important for policymakers, or general non-experts,
as it not only details how we arrive at the given outputs, but
it provides an understanding of which processes were most
crucial in determining those outputs as can be seen from the
path probabilities assigned to each of the vertices.

Additionally, by associating nodes in trace graphs represent-
ing the same physical processes within different models, the
significance of model detail can be evaluated. For example,
the full trace presented in Table 4 represent a sampling step
associated with within-host dynamics of the malaria parasite
Falciparum in OpenMalaria node A1. The same physical
process also occurs in EMOD’s trace graph at position A7
(see Section 2). Comparisons like these could help devel-
opers better control model complexity, and even provide an
alternative testing and debugging paradigm.
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Figure 3. Here we run two equivalent models, compare the corresponding trace paths and corresponding path probabilities taken by the
thousands of random variables generated internally within the simulators. Top: The specified model run in EMOD. Bottom: The specified
model in OpenMalaria.

Table 1. An example of an address generated for the model run
in the OpenMalaria simulator. We can see that A1 relates to
Generating a member of the human population who may or may
not be infect with the malaria disease. We get something similar for
EMOD, except this relates to A7 in the EMOD program execution.

Address ID Full address

A1 [forward()+0x204; OM::Simulator::
start(scnXml::Monitoring const)+0x28a;
OM::Population::createInitialHumans()+0x94;
OM::Population::newHuman(OM::SimTime)+0x5c;
OM::Host::Human::Human(OM::SimTime)+0x12b;
OM::WithinHost::WHInterface::
createWithinHostModel(double)+0x99;
OM::WithinHost::DescriptiveWithinHostModel
::DescriptiveWithinHostModel(double)+0x3a;
OM::WithinHost::WHFalciparum::
WHFalciparum(double)+0xe6;
OM::util::random::
gauss(double, double)+0xb4] Normal

...
...

5. Discussions and Future Work
In this work we have demonstrated a method that enables
one to hijack population-based simulators, extending the
work of Baydin et al. (2018). We applied our method to two
malaria-orientated population-based simulators and gener-
ated a variety of trace graphs. Finally, we have shown how
our system enables policy makers and non-experts to anal-
yse simulator outputs in a way previously unavailable in the
field of epidemiology.

Table 2. An interpretation table for each of the address of the over-
all trace generated from the corresponding OpenMalaria model.
Address ID Interpretation

A1 Generate a human in the
population within host dynamics

A2 Generate another human in
the population within host dynamics

A3 The population is updated and
a new human, or humans, may get infected

A4, A5 Potential child deaths
within the population are simulated

A6 Determines parasite density
of an individual infection

A7 Models how the disease is
progressing within the infected humans

A8 Models how the disease is
progressing within the population

A9 Models how the disease is
progressing within the infected humans
after the population has been updated

A10 Full clinical update on
the population for those without severe
or no Malaria infection.

A11 Full clinical update on the population
for those with severe Malaria infections

To extend our work further we aim to implement additional
tools that will facilitate complicated inference procedures
that condition on simulator output. We will also evaluate
additional scenarios across Africa and Southeast Asia to
better understand the similarities and differences between
EMOD and OpenMalaria.
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