
Hamiltonian Monte Carlo for Probabilistic Programs
with Discontinuities

Yuan Zhou*
University of Oxford

Bradley J.
Gram-Hansen*

University of Oxford

Tobias Kohn†
University of Cambridge

Tom Rainforth
University of Oxford

Hongseok Yang
KAIST

Frank Wood
University of British

Columbia

Abstract
Hamiltonian Monte Carlo (HMC) is arguably the dominant
statistical inference algorithm used in most popular “first-
order differentiable” Probabilistic Programming Languages
(PPLs). However, the fact that HMC uses derivative infor-
mation causes complications when the target distribution is
non-differentiable with respect to one or more of the latent
variables.

In this paper, we show how to use extensions to HMC
to perform inference in probabilistic programs that contain
discontinuities. To do this, we design a Simple first-order
Probabilistic Programming Language (SPPL) that contains a
sufficient set of language restrictions together with a compi-
lation scheme. This enables us to preserve both the statistical
and syntactic interpretation of if-else statements in the
probabilistic program, within the scope of first-order PPLs.
We also provide a corresponding mathematical formalism
that ensures any joint density denoted in such a language
has a suitably low measure of discontinuities.

Keywords probabilistic programming, HMC, discontinu-
ous densities, compilers

1 Introduction
HamiltonianMonte Carlo (HMC) [4, 12] is an efficientMarkov
Chain Monte Carlo (MCMC) algorithm that has been widely
used for inference in a wide-range of probabilistic mod-
els [3, 9, 15]. Its superior performance arises from the advan-
tageous properties of the sample paths that it generates via
Hamiltonian mechanics. HMC, particularly the No-U-turn
sampler (NUTS) [8] variant, is implemented in many Proba-
bilistic Programming Systems (PPSs)[5, 6, 14, 16], and is the
main inference engine of both PyMC3 [14] and Stan [2, 6].
One drawback of using HMC in probabilistic program-

ming is that complications can arise when the target distri-
bution is not differentiable with respect to one or more of
its parameters. Developers often impose restrictions on the
models that can be encoded to try and avoid these compli-
cations, such as preventing the use of discrete variables or
only allowing them if they are directly marginalized out.

PROBPROG’18, October 4–6, 2018, Boston, MA
*Equal Contribution, †Work at Oxford.

However, even these restrictions are not sufficient to guar-
antee the program is discontinuity-free because control flow
special forms, such as if-else statements in PPLs, can also
induce discontinuities.

Though it turns out, perhaps surprisingly, that HMC still
constitutes a valid inference algorithm when the target is
discontinuous or even if it has disjoint support, this can
substantially reduce the acceptance rate leading to inefficient
inference.

To mitigate this issue, several variants of HMC have been
developed [1, 13] to perform inference on models with dis-
continuous densities. However, existing systems, like Stan,
are not able to support these variants as their compilation
procedures do not unearth the required discontinuity infor-
mation. Creating a system that addresses this issue in an
automated way is non-trivial and requires significant heavy
lifting from the programming languages perspective.

Therefore, in this extended abstract, we define a carefully
designed probabilistic programming language with an ac-
companying denotational semantics and compiler. Together,
these are able to both recover the discontinuity informa-
tion required to use these HMC variants as inference en-
gines and provide a framework amenable to the theoretical
analysis required to demonstrate the correctness of the re-
sulting engines. To ensure that the measure of the set of
discontinuities in the target density is of measure zero, we
provide a mathematical formalism to compliment our lan-
guage. This then provides us with a framework in which
we can conservatively and correctly employ HMC and its
variants. We demonstrate this for the Discontinuous Hamil-
tonian Monte Carlo (DHMC) algorithm [13] and provide an
example of our language being employed on models that
have non-differentiable densities.

2 A Simple PPL
SPPL uses a Lisp style syntax, like that of Church [7], An-
glican [17] and Venture [10]. The syntax of expressions e in
our language is given as follows:

e ::=x | c | (p e . . . e) | (if (< e 0) e e) | (let [x e] e)
| (sample (d e . . . e)) | (observe (d e . . . e) c)

1

ar
X

iv
:1

80
4.

03
52

3v
2

 [
st

at
.C

O
]

 2
 J

an
 2

01
9

PROBPROG’18, October 4–6, 2018, Boston, MA Zhou and Gram-Hansen

Figure 1. A simple probabilistic program example written
in Anglican (a) with Bernoulli distribution as a primitive and
an equivalent one in SPPL (b) where the Bernoulli draw is
constructed by a Uniform-draw and if-else statement.

We use x for a real-valued variable, c for a real number, p for
an analytic primitive operation on real, such as + and exp ,
and d for the type of a distribution onR, such as Normal, that
has a piece-wise smooth density under analytic partition.
To be less technical, this is restricted on d only allows

continuous distribution as primitives. However, one can eas-
ily construct discrete distributions as was seen in Figure 1,
where Program 1 (a) and 2 (b) define the joint density of the
model respectively as following,

p1(z,y) =pB (z;q)pN(y; 1, 1)I(z=1) pN(y; 0, 1)I(z=0)

p2(x ,y) =pU (x ; 0, 1)pN(y; 1, 1)I(x>q) pN(y; 0, 1)I(x ≤q)

Note that there are no forms for applying general func-
tions in this language and no recursion is possible at all. As a
result, all programs written in this language may only have a
finite and fixed number of sample and observe statements. This
means, among other things, that programs in this language
can be compiled to graphical models in which there are finite
number of random variable vertices coming from every sam-
ple and observe statement. For this reason we will mix our
use of the terms graphical model and probabilistic program,
or just program, because of their equivalence.
The primitives are, by design, restricted to be analytic.

Analytic functions are abundant and most primitive func-
tions that we encounter in machine learning applications
are analytic, and their composition is also analytic.
Intuitively, programs in SPPL have a joint density in the

form as Definition 1 (See Appendix A). It can be understood
as a collection of smooth functions in each partition, with no
partition overlapping and the union of all partitions is the
total space Rk . To evaluate the sum, therefore, we just need
to evaluate these products at x one-by-one until we find one
that returns a non-zero value. Then, we have to compute the
function hi corresponding to this product at the input x .

Theorem 1. If the density f : Rn → R+ has the form of
Definition 1 and so is piecewise smooth under analytic partition,
then there exists a (Borel) measurable subset A ⊆ Rn such that
f is differentiable outside of A and the Lebesgue measure of A
is zero.

Together with Definition 1 and Theorem 1, we ensures
that SPPL conforms to Lemma 1 and Theorems 2 and 3 of
DHMC [13] and so, by design, all requirements for DHMC

100 101 102 103 104 105

Sample Size
10 7

10 6
10 5
10 4

10 3
10 2
10 1

100

M
SE

NUTS-MwG(pymc3)
DHMC

Figure 2. Mean Squared Error for the posterior estimates
to true posterior of the cluster means µ1:2. We compare
the results from DHMC and NUTS with Metropolis-within-
Gibbs(MwG). The median (dashed lines) and 20%/80% confi-
dence intervals(shaded) over 20 independent runs are shown.

are trivially met as the density is a piecewise smooth function
and all discontinuities are of measure zero.

3 The Compilation Scheme
Accompanying the language, our compilation scheme is de-
signed to establish variables which the density is discontin-
uous with respect to and provide information for runtime
checking on boundary crossing. It works by automatically
extracting if predicates and evaluating them with the cor-
responding random variables. Each predicate is assigned
a unique name and corresponding boolean. If the boolean
changes value, it indicates the corresponding random vari-
able has crossed the boundary during the update in inference
at runtime. The runtime checker will record this information
and pass it to the inference engine. Note that the runtime
checking can only detect boundary crossing instead of being
able to calculate the analytical solution on where the bound-
aries are exactly. We recognize the former part is sufficient
for many specialized inference engines and leave the later
part to be implemented as future work.

4 Experiment
We now consider a classic Gaussian mixture model (GMM),
where one is interested to estimate the mean of each cluster
and the cluster assignment for each data. The density of
this model contains a mixture of continuous and discrete
variables (See details of the model in Appendix C).

We compared the Mean Squared Error (MSE) of the poste-
rior estimates for the cluster means of both an unoptimized
version of DHMC and PyMC3 [14] optimized implementa-
tion of NUTS with Metropolis-within-Gibbs(MwG), with the
same computation budget. The results are shown in Figure 2
as a function of number of samples. We take 100, 000 samples
and discard 10, 000 for burn in. We calculate the 20%/80%
confidence intervals over 20 independent runs and find that

2

Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities PROBPROG’18, October 4–6, 2018, Boston, MA

both approaches perform consistently well. We find that our
unoptimized DHMC implementation, performs comparable
to the optimized NUTS with MwG approach.

A Piecewise Smooth Function
Definition 1. A function f : Rk → R is piecewise smooth
under analytic partition if it has the following form:

f (x) =
N∑
i=1

(
Mi∏
j=1
I(pi, j (x) ≥ 0) ·

Oi∏
l=1
I(qi,l (x) < 0) · hi (x)

)
where

1. the pi, j ,qi,l : Rk → R are analytic;
2. the hi : Rk → R are smooth;
3. N is a non-negative integer or ∞;
4. Mi ,Oi are non-negative integers; and
5. the indicator functions

Mi∏
j=1
I(pi, j (x) ≥ 0) ·

Oi∏
l=1
I(qi,l (x) < 0) · hi (x)

for the indices i define a partition of Rk as,{{
x ∈Rk

��� pi, j (x) ≥ 0, qi,l (x)< 0 for all j, l
} ��� 1 ≤ i ≤ N

}
.

B Proof of Theorem 1
Proof. Assume that f is piecewise smooth under analytic
partition. Thus,

f (x) =
N∑
i=1

Mi∏
j=1
I(pi, j (x) ≥ 0) ·

Oi∏
l=1
I(qi,l (x) < 0) · hi (x) (1)

for some N ,Mi ,Oi and pi, j ,qi,l ,hi that satisfy the properties
in Definition 1.

We use one well-known fact: the zero set {x ∈ Rn | p(x) =
0} of an analytic function p is the entire Rn or has zero
Lebesgue measure [11]. We apply the fact to each pi, j and
deduce that the zero set of pi, j is Rn or has measure zero.
Note that if the zero set of pi, j is the entire Rn , the indicator
function [pi, j ≥ 0] becomes the constant-1 function, so that
it can be omitted from the RHS of equation (1). In the rest of
the proof, we assume that this simplification is already done
so that the zero set of pi, j has measure zero for every i, j.
For every 1 ≤ i ≤ N , we decompose the i-th region

Ri = {x | pi, j ≥ 0 and qi,l (x) < 0 for all j, l}
to

R′
i = {x | pi, j > 0 and qi,l (x) < 0 for all j, l}

and R′′
i = Ri \ R′

i .

Note that R′
i is open because the pi, j and qi,l are analytic and

so continuous, both {r ∈ R | r > 0} and {r ∈ R | r < 0}
are open, and the inverse images of open sets by continuous
functions are open. This means that for each x ∈ R′

i , we
can find an open ball at x inside R′

i so that f (x ′) = hi (x ′)
for all x ′ in the ball. Since hi is smooth, this implies that f

is differentiable at every x ∈ R′
i . For the other part R

′′
i , we

notice that

R′′
i ⊆

Mi⋃
j=1

{x | pi, j (x) = 0}.

The RHS of this equation is a finite union of measure-zero
sets, so it has measure zero. Thus, R′′

i also has measure zero
as well.

Since {Ri }1≤i≤N is a partition of Rn , we have that

Rn =
N⋃
i=1

R′
i ∪

N⋃
i=1

R′′
i .

The density f is differentiable on the union of R′
i ’s. Also,

since the union of finitely or countably many measure-zero
sets has measure zero, the union of R′′

i ’s has measure zero.
Thus, we can set the set A required in the theorem to be this
second union. □

C Details of GMM
The Gaussian Mixture Model (GMM) can be defined as,

µk ∼ N(µ0,σ0), k = 1, . . . ,K
zn ∼ Categorical(p0), n = 1, . . . ,N

yn |zn , µzn ∼ N(µzn ,σzn), n = 1, . . . ,N

where µ1:K , z1:N are latent variables, y1:N are observed data
with K as the number of clusters and N the total number of
data. Although Categorical distribution is not in our primi-
tive, we can easily construct it in our language by the com-
bination of uniform draws and nested if expressions.
For our experiment, we considered a simple case with

K = 2, µ0 = 0,σ0 = 2,σz1:N = 1 and p0 = [0.5, 0.5], along
with y1:N = [−2.0,−2.5,−1.7,−1.9,−2.2, 1.5, 2.2, 3, 1.2, 2.8]
as the synthetic dataset.

References
[1] Hadi Mohasel Afshar and Justin Domke. 2015. Reflection, Refraction,

and Hamiltonian Monte Carlo. In Advances in Neural Information
Processing Systems. 3007–3015.

[2] Bob Carpenter, Matthew D Hoffman, Marcus Brubaker, Daniel Lee,
Peter Li, and Michael Betancourt. 2015. The Stan Math Library:
Reverse-mode Automatic Differentiation in C++. arXiv preprint
arXiv:1509.07164 (2015).

[3] Gabriel Doyle, Dan Yurovsky, and Michael C Frank. 2016. A Robust
Framework for Estimating Linguistic Alignment in Twitter Conversa-
tions. In Proceedings of the 25th international conference on world wide
web. International World Wide Web Conferences Steering Committee,
637–648.

[4] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan
Roweth. 1987. Hybrid Monte Carlo. Physics letters B (1987).

[5] Bingham Eli, Jonathan P Chen, Martin Jankowiak, Theofanis Kar-
aletsos, Fritz Obermeyer, Neeraj Pradhan, Rohit Singh, Paul Szerlip,
and Noah Goodman. 2017. Pyro: Deep Probabilistic Programming.
https://github.com/uber/pyro.

[6] Andrew Gelman, Daniel Lee, and Jiqiang Guo. 2015. Stan: A Probabilis-
tic Programming Language for Bayesian Inference and Optimization.
Journal of Educational and Behavioral Statistics 40, 5 (2015), 530–543.

3

https://github.com/uber/pyro

PROBPROG’18, October 4–6, 2018, Boston, MA Zhou and Gram-Hansen

[7] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith
Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A Language
for Generative Models. In In UAI. 220–229.

[8] Matthew D Hoffman and Andrew Gelman. 2014. The No-U-turn
Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.
Journal of Machine Learning Research 15, 1 (2014), 1593–1623.

[9] Ian J Jacobs, Usha Menon, Andy Ryan, Aleksandra Gentry-Maharaj,
Matthew Burnell, Jatinderpal K Kalsi, Nazar N Amso, Sophia Apos-
tolidou, Elizabeth Benjamin, Derek Cruickshank, et al. 2016. Ovarian
Cancer Screening and Mortality in the UK Collaborative Trial of Ovar-
ian Cancer Screening (UKCTOCS): A Randomised Controlled Trial.
The Lancet 387, 10022 (2016), 945–956.

[10] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: A
Higher-order Probabilistic Programming Platform with Programmable
Inference. arXiv preprint arXiv:1404.0099 (2014).

[11] Boris Mityagin. 2015. The Zero Set of a Real Analytic Function. arXiv
preprint arXiv:1512.07276 (2015).

[12] RadfordMNeal. 2011. MCMCUsing Hamiltonian dynamics. Handbook
of Markov Chain Monte Carlo (2011).

[13] Akihiko Nishimura, David Dunson, and Jianfeng Lu. 2017. Discon-
tinuous Hamiltonian Monte Carlo for Sampling Discrete Parameters.
arXiv preprint arXiv:1705.08510 (2017).

[14] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. 2016.
Probabilistic Programming in Python Using PyMC3. PeerJ Computer
Science 2 (2016), e55.

[15] Valentine Svensson, Kedar Nath Natarajan, Lam-Ha Ly, Ricardo J Mi-
ragaia, Charlotte Labalette, Iain C Macaulay, Ana Cvejic, and Sarah A
Teichmann. 2017. Power Analysis of Single-cell RNA-sequencing
Experiments. Nature methods 14, 4 (2017), 381.

[16] Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo,
Kevin Murphy, and David M Blei. 2017. Deep Probabilistic Program-
ming. arXiv preprint arXiv:1701.03757 (2017).

[17] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A
New Approach to Probabilistic Programming Inference. In Artificial
Intelligence and Statistics.

4

	Abstract
	1 Introduction
	2 A Simple PPL
	3 The Compilation Scheme
	4 Experiment
	A Piecewise Smooth Function
	B Proof of Theorem ??
	C Details of GMM
	References

