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Abstract

This dissertation investigates the creation of entanglement through some form of interac-

tion. We see that in our systems we may introduce an entanglement parameter, which is

linked directly to the interaction term in our system. The entanglement parameter deter-

mines the correlation between our quantum particles. In order to quantify this we use two

different measures; the Von-Neumann entanglement entropy and the linear entropy, which

tell us about the correlations in our system. We find that the strength of correlation in

the system, is dependent on the interaction term in the potential. The two potentials that

we shall investigate in this dissertation are the Coulomb potential of the hydrogen atom

and a toy model of two coupled quantum particles via a quadratic potential (two coupled

harmonic oscillators). For the Coulomb potential our entanglement parameter is the Bohr

radius a0 and for our system with a quadratic potential we introduce the entanglement

parameter κ, related to the coupling strength. We find that in the hydrogen atom the

electron-proton system is strongly correlated for small values of a0 and for larger values

of a0 the correlation between them becomes weaker. This is because in increasing a0 we

reduce the strength of interaction between the electron and proton. However, for the

quadratic potential the results are very different. We find that not only does the system

become highly correlated for low values of κ, but becomes maximally entangled for linear

entropy as κ→∞.
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Introduction

The quantum property of entanglement was first discussed in 1935 by Einstein, Podolsky

and Rosen (EPR) in their highly cited paper[EPR35] regarding the implications of what

quantum mechanics means for the reality of the world. Entanglement is commonly referred

to as ‘spooky action at a distance’ after the comments of Einstein, but is entanglement re-

ally so ‘spooky’ or is it something that we should be very grateful to have? Entanglement

is a truly amazing feature of quantum mechanics, if we can harness entanglement as a

resource then we have the opportunity to revolutionise the world around us, through the

creation of a universal quantum computer and who knows what else. It is even believed

that entanglement is actually a fundamental property of the geometry of space-time and

that it is responsible for the creation of the universe that surrounds us[Oue15]. In this

work specifically we shall be developing the ideas presented by Tommasini,Timmermans

and de Toledo Piza in their paper regarding the entanglement between the electron and

proton in the hydrogen atom [TTdTP98]. In the paper they take the well known wave-

function for the hydrogen atom and show how it becomes entangled, which we shall discuss

in more depth in chapter three; Entanglement in physical systems. They then state that

in order to understand how entangled the system is, we must look at the reduced density

matrix ρ̃(k = p
~ ) in the momentum space, not the position space. The ρ̃(k) turn out to be

the eigenvalues of our system, with eigenstates given by normalised plane waves. Using

the spectral data they then go on to calculate the standard deviation of the momentum

distribution to find that the standard deviation ∆p is proportional to 1
a0

, where a0 is the

Bohr radius. They state that in this context the standard deviation is a measure of the

strength of correlation, and that the stronger the correlation between the electron and

proton the higher the value of a0. Now of course, I hear you cry “But isn’t the Bohr

radius a fixed parameter dependent on the orbital quantum number n?”

Well, in the usual sense yes it is, but in this context we can view it as some sort of en-

tanglement parameter and this idea of an entanglement parameter will be at the centre

of our investigations in chapter three.
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Our investigations will focus on two systems, firstly we shall revisit the hydrogen atom,

but this time to quantify the entanglement using two other measures, the Von-Neumann

entanglement entropy and the linear entropy in terms of our entanglement parameter a0.

The second system that we shall look at is a toy model describing two coupled quantum

bosonic particles with a quadratic potential. We shall see in chapter three that this system

also has an entangled wavefunction. The difference this time is that we have introduced

a new entanglement parameter ‘κ’, related to the coupling strength. We then proceed

again to quantify the amount of entanglement in the system, with the same measures we

used for the hydrogen atom. We aim to see how the potentials in both of these systems

effect the strength of the correlations between our quantum objects. This is because it

is the potentials that induce the interaction between them. Of course this is important

as it is the interaction that is responsible for the creation of entanglement in these two

systems. We also see in chapter three that for a potential of the form V ∝ 1
r

(the Coulomb

potential) that the entanglement is strongest near the origin and decreases rather rapidly

as a0 is increased, contrary to the statements made in [TTdTP98]. However, in observing

the behaviour of our entanglement measures as a function of a0, the way in which they

tend to zero is very different and presents many questions. Conversely, for a potential

of the form V ∝ r2 (quadratic potential) we find that the system becomes increasingly

correlated as our entanglement parameter κ is increased and for linear entropy as κ tends

to infinity, the state becomes maximally entangled. Both entanglement measures have

the same curve and agree strongly, unlike the case for 1
r
.

Of course, in order to understand these models we first need to understand the rules

of the game, that being quantum mechanics. The first chapter of this dissertation is

dedicated solely towards providing the tools for understanding the introductory ideas

in quantum information science and providing the reader with the right knowledge of

quantum mechanics to progress on to further chapters. This then enables us in chapter

two to discuss the ideas of entanglement, what it means to be entangled, why something
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is entangled and how we quantify entanglement as an amount. From which we can

move on to chapter three to discuss our two physical examples; one with the Coulomb

potential and the other with a quadratic potential, we derive the wavefunctions for both

systems analytically. We then collect our thoughts and finish with a conclusion expressing

further areas of interest and a discussion about the effects of interaction on the creation

of entanglement.
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Chapter 1

Quantum formalism

The aim of this chapter is to familiarise the reader with certain aspects of quantum me-

chanics, which will be important for understanding several areas of this dissertation. It is

assumed that the reader will have some familiarity with the basic principles of quantum

mechanics, such as the postulates. We shall also explore some of the introductory formal-

ism of quantum information science, that will enable us to construct our entanglement

measures.
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1 Hilbert spaces and state vectors

Before we can admire the wonders of quantum mechanics, we need to define a frame-

work within which we can develop a formalism that defines the actions of the quantum

world. We do this by introducing the notion of a Hilbert space, where the Hilbert space

encapsulates the idea of a linear space in which we have orthogonality.

Definition 1.1. : Let H be a finite dimensional complex linear space. An inner product

on H is a map 〈.|.〉 : H ×H → C satisfying the following conditions for all |ψ〉 , |φ〉 and

|χ〉 ∈ H, α ∈ C

1. Positivity 〈ψ|ψ〉 ≥ 0, ∀ |ψ〉 ∈ H

2. Definiteness 〈ψ|ψ〉 = 0 if and only if |ψ〉 = 0

3. Additivity 〈ψ|φ+ χ〉 = 〈ψ|φ〉+ 〈ψ|χ〉 ∀ |ψ〉 , |φ〉 , |χ〉 ∈ H

4. Homogeneity 〈ψ|αφ〉 = α 〈ψ|φ〉

5. Conjugate symmetry 〈ψ|φ〉 = 〈φ|ψ〉∗

The norm of a vector |ψ〉1 is defined as ‖ψ‖ =
√
〈ψ|ψ〉. A space H with an inner product

(|.〉 , |.〉) = 〈.|.〉 is called a Hilbert space.

By using the inner product of two ket vectors, it becomes possible to construct an

orthonormal basis {|χk〉} such that:

(|χi〉 , |χj〉) = 〈χi|χj〉 = δij (1.1)

Therefore suppose |ψ〉 =
∑

k ψk |χk〉, by multiplying |χk〉 from the left we obtain 〈χk|ψ〉 =

ψk, which is just a scalar. This enables us to express a wavefunction in terms of an

orthonormal basis as:

|ψ〉 =
∑
k

〈χk|ψ〉 |χk〉 =
∑
k

|χk〉 〈χk|ψ〉

1It is assumed that the reader is comfortable with Dirac notation and the notions of a dual space.
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Since this is true for any |ψ〉, we define the completeness relation to be:

∑
k

|χk〉〈χk| = I (1.2)

where I is the identity operator in H. The completeness relation can be expanded for

systems with a continuous spectra as follows:∫
dχ |χ〉〈χ| = 1 (1.3)

To give an idea of what a Hilbert space looks like we have included below some basic,

yet important examples:

1. Finite dimensional H: Given Cn as the space of column vectors z := (z1, z2, . . . , zn)

with inner product:

(|z〉 , |µ〉) = 〈z|µ〉 =
n∑
j=1

z†jµj = z∗µ

where † represents the adjoint.

2. Infinite dimensional H: L2 the space of square integrable complex valued functions

on some set A:

〈ψ|φ〉 =

∫
A

ψ∗(x)φ(x)dx <∞

The second example will be of particular importance for the latter part of this dissertation.

In creating a framework for our quantum world we can now introduce the state vector

|ψ〉 ∈ H∫ , where H∫ is the state space and is a complex Hilbert space associated to a

closed quantum system. The state vector is usually a time-dependent unit vector and

represents the quantum state of the system, however in this dissertation we shall be only

dealing with time-independent state vectors, also called stationary states. The quantum

state contains all the information we need to know about our particular system and

in order to extract that information we must apply different linear operations to our

state. This allows us to extract the spectral data, by which I mean the eigenvalues and

the corresponding eigenvectors (eigenkets) which provide us with the information about
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the associated outcomes of a linear operator representing a measurable quantity “An

observable”. The general eigenvalue equation is as follows:

A |ψi〉 = λi |ψi〉 , λi ∈ R (1.4)

2 Linear operators and tensor products

2.1 Linear operators

Linear operators are used in many different areas of mathematics, from pure mathematics

all the way through to computer science. One of their most important roles is to describe

the operations of our quantum world, within the framework of a Hilbert space H. They

enable us to extract information about the spectrum of a state and help us to construct

a picture of the evolution of that particular quantum state or states. We can represent

any linear operator on a d-dimensional Hilbert space H by some operator Â. Formally

we say:

Definition 2.1. : Let (H, 〈.|.〉) be a Hilbert space. A linear operator on H is a map Â :

H → H satisfying the linearity condition Â(α |φ〉+β |ψ〉) = αÂ |ψ〉+βÂ |φ〉 . ∀ |ψ〉 , |φ〉 ∈

H and α, β ∈ C

An important class of linear operators are the self-adjoint operators that represent ob-

servable quantities, where a self-adjoint operator is one such that Â = Â†. The operators

must be self-adjoint because the eigenvalues of the operator represent the possible out-

comes of a quantum state i.e. the measurement outcomes. These of course must be real

and so the eigenvalues of the operator must also be real, which is true for all self-adjoint

operators. Four important linear operators that are used throughout quantum mechanics

and quantum information theory are the Pauli spin matrices:

σ0 =

 1 0

0 1

 , σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1
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2.2 Projectors

Projectors play a key role in quantum mechanics and have an especially important role in

measurement. But what is a projector? Well, suppose U is a k-dimensional subspace of

the Hilbert space H, it can be shown that there exists a unique decomposition of a vector

|ψ〉 in to its component in U and U⊥, where U⊥ is the subspace orthogonal to U , so that

we have:

|ψ〉 = |ψU〉+ |ψU⊥〉

where |ψU〉 ∈ U and |ψU⊥〉 ∈ U⊥. Thus the orthogonal projection onto U is defined as

the map: P U : |ψ〉 7→ |ψU〉, from which we define the projector operator:

Definition 2.2. Let H be a Hilbert space. A projection operator P̂ is a linear operator

on H satisfying:

Self-adjoint: P̂ = P̂ †

Idempotent: P̂ 2 = P̂ · P̂ = P̂

In the general case where U := Range(P̂ ) is multidimensional, we can choose an arbi-

trary orthonormal basis {|χ1〉 , . . . , |χd〉} ∈ U and express P̂ as the sum of one-dimensional

projectors onto these vectors:

P̂ =
d∑

k=1

|χk〉〈χk| (2.1)

(2.1) is one of the most useful tools in quantum information science for cutting through

complexity and performing a range of different operations on our quantum system.

2.3 Trace

An important operation is the trace, which has a whole variety of uses throughout quan-

tum mechanics and quantum information science. The trace will form an important part

of our tool bag. In terms of state vectors we may define the trace as:

Definition 2.3. Suppose {|ψi〉} is a complete orthonormal basis set in H. Since a linear

operator on a d-dimensional Hilbert space can be represented as a matrix with elements
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Aij = 〈ψi|Â|ψj〉 , we can define the trace of an operator as follows:

Tr(Â) =
d∑
i=1

〈ψi|Â|ψi〉 (2.2)

Below we have complied a list of some of the basic properties of the trace:

1. Linearity: Tr(αÂ+ βB̂) = αTr(Â) + βTr(B̂)

2. Cyclicity: Tr(ÂB̂) = Tr(B̂Â)

3. Basis free representation: If {|µ1〉 , . . . , |µd〉} is another complete orthonormal basis

in H then:

Tr(Â) =
d∑
i=1

〈φi|Â|φi〉 =
d∑
i=1

〈µi|Â|µi〉

4. Tr(|ψ〉〈φ|) = 〈φ|ψ〉 for all |ψ〉 , |φ〉 ∈ H

2.4 Normal and Unitary Operators

In order to describe how a quantum state evolves in a isolated system we introduce a

very important type of linear operator, the unitary operator Û . The unitary operator is a

special type of normal operator, where an operator N̂ on H is called normal if and only if

N̂N̂ † = N̂ †N̂ . The unitary operator is special, as Û Û † = Û †Û = I and has the following

formal definition:

Definition 2.4. : A operator Û is unitary if and only if the following holds Û Û † =

Û †Û = Î where Û † is the adjoint of Û . Unitary operators have the following interesting

properties:

1. The rows and columns of Û form an orthonormal basis.

2. Û preserves inner products
〈
ψÛ
∣∣∣Ûφ〉 = 〈ψ|Û †Û |φ〉 = 〈ψ|φ〉 which implies Û pre-

serves norms and angles up to some phase.

3. The eigenvalues of Û are all of the form exp(iθ).
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4. Which means Û can be diagonalized in the following way:

Û =


eiθ1 0 . . . 0

0
. . . . . . 0

...
. . . . . .

...

0 . . . 0 eiθd


Essentially the unitary operators ‘represent’ the observable time in quantum mechan-

ics.

2.5 The position and momentum operators

Two important operators that we will see throughout this dissertation are the position

and momentum operators x̂ and p̂. We say loosely, that these operators are the quantum

analogues of their classical counterparts. This is because any set of operators defined in

such a way that the following commutation relation2 is satisfied:

[x̂, p̂] = x̂p̂− p̂x̂ = −i~ (2.3)

where typically ~ is defined to be one, are suitable quantum operators for representing our

position and momentum variables. The reason for this is quite technical and full of subtle

points, but the crux of the argument is to do with the concept of canonical quantisation 3,

which is essentially a set of axioms to transform our classical ideas to the quantum world.

As mentioned previously the given outcomes for a particular observable are determined

by the spectrum of the linear operator representing that observable, this is of course true

for the position and momentum. In the position representation using the basis |x〉 and

the eigenvalue equation (1.4) we have:

x̂ |x〉 = x |x〉 (2.4)

and by complex conjugation we have:

〈x| x̂ = 〈x|x (2.5)

2See appendix A for information regarding commutation relations
3See [Nak03] for a detailed discussion.
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the eigenvalues must be real for observables. Thus multiplying (2.5) by |ψ〉 from the right

we get:

〈x|x̂|ψ〉 = x 〈x|ψ〉 = xψ(x) = xψx (2.6)

But how exactly do we represent the momentum operator p̂, which has basis states |p〉,

in terms of the position basis states |x〉? We begin by considering the following unitary

operator:

Û(a) = e(−iap̂) (2.7)

which satisfies the following relation:

Û(a) |x〉 = |x+ a〉 (2.8)

This can be seen by looking at the commutation relation between x̂ and Û(a) and writing

the exponential operation in terms of its taylor series. If we then take a = ε , where ε is

a infinitesimal number[Nak03], so that we can write (2.8) as:

Û(ε) |x〉 = |x+ ε〉 ' (1− iεp̂) |x〉

it follows that:

p̂ |x〉 =
|x+ ε〉 − |x〉
−iε

as ε→ 0 = i
d

dx
|x〉 (2.9)

and so its dual is:

〈x| p̂ =
〈x+ ε| − 〈x|
−iε

as ε→ 0 = −i d
dx
|x〉 (2.10)

therefore for any state |ψ〉 we obtain:

〈x|p̂|ψ〉 = −i d
dx
〈x|ψ〉 = −i d

dx
ψ(x) (2.11)

and so in the position representation p̂ = −i d
dx

or for multiple dimensions the derivative

is replaced by the Laplacian. If instead we’d chosen to work in the momentum represen-

tation, which has eigenstates |p〉, then for every definition in the previous discussion we

would just interchange x̂ with p̂ . Combining these definitions we arrive at the following:

〈x|p〉 =
1

(2π)
1
2

e(ipx) (2.12)

〈p|x〉 =
1

(2π)
1
2

e(−ipx) (2.13)
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where C = 1

(2π)
1
2

is the normalisation constant for the normalisation condition 〈x|x′〉 =

δ(x − x′). From these relation we see how we can change from one representation to

another i.e. ψ(x)→ ψ(p):

ψ(p) = 〈p|ψ〉 =

∫
dx 〈p|x〉 〈x|ψ〉 =

∫
dx

(2π)
1
2

e(−ipx)ψ(x) (2.14)

which is merely the Fourier transform of ψ(x). Likewise to transform in the opposite

direction we take the inverse Fourier transform. It is worth noting that all the definitions

above can be easily extended to cope with multiple dimensions.

2.6 The Schödinger equation

The Schrödigner equation has the equivalent quantum role as that of Newton’s laws in

classical mechanics; it enables us to predict the future behaviour of our quantum state. It

does this via the wavefunction, which we find when we solve Schrödigner’s equation. The

wavefunction provides us with the probability distributions for a given event to occur. It

should be noted however, that the wavefunction can only be found analytically in a few

special cases, although there are several numerical and approximation methods that exist

which provide us with some structural information about more complex wavefunctions.

Thus without further delay, the time-independent Schrödigner equation is defined as:

Ĥ |ψ〉 = E |ψ〉 (2.15)

where Ĥ represents our Hamiltonian operator, E we define to be the eigenvalues of the

Hamiltonian operator which represent the Energy spectrum and |ψ〉 is our state vector.

The wavefunction itself is defined according to the representation we are using, whether

that be position, momentum etc. For example in position representation we say that ψx =

〈x|ψ〉 ∈ C and since other representations have different basis vectors, the wavefunctions

in those representations will be defined accordingly. Thus we can represent the state

vector, in the position basis, as follows:

|ψ〉 =

∫
dx |x〉〈x| |ψ〉 =

∫
ψ(x) |x〉 (2.16)
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where the probability of finding the particle in the interval [x, x + dx] in the state |ψ〉

is determined by |ψ(x)|2dx. Thus it is natural to impose the following normalisation

condition: ∫
dx|ψ(x)|2 = 〈ψ|ψ〉 = 1 (2.17)

2.7 Tensor products

In quantum mechanics, when we deal with multiple systems we require several different

Hilbert spaces. In order to connect these spaces together, to form composite systems, we

introduce the notion of a tensor product. To understand the tensor product, it is best to

first look at its definition for matrices:

Definition 2.5. Let A ∈ Mn,m and B ∈ Mk,p be two complex matrices. The tensor

product A⊗B is the mk ⊗ np matrix with the following block structure

A⊗B =


A11B A12B . . . A1nB

A21B A22B . . . A2nB

...
...

. . .
...

Am1B Am2B . . . AmnB


(2.18)

as a simple example let us take the tensor product of two, two by one vectors:

2

8

⊗
3

5

 =


6

10

24

40


(2.19)

We list below a few properties of the tensor product for matrices A,B, C and D and the

scalars α, β and γ:

1. A⊗B 6= B ⊗ A

2. A⊗ (βB + γC) = βA⊗B + γA⊗ C
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3. (αA+ βB)⊗ C = αA⊗ C + βB ⊗ C

4. (A⊗B)⊗ C = A⊗ (B ⊗ C)

5. (A⊗B) · (C ⊗D) = AC ⊗BD whenever the products exist.

6. AT ⊗BT = (A⊗B)T

7. A† ⊗B† = (A⊗B)†

Now that we have introduced the tensor product for matrices, we are ready to move to

a ‘basis free’ [Gut15] perspective by defining the tensor products of Hilbert spaces and

operators.

Definition 2.6. Let U and V be two linear vector spaces. The tensor product U ⊗ V is

the linear space spanned by elements of the form |ψ〉 ⊗ |φ〉, where |ψ〉 ∈ U and |φ〉 ∈ V

such that the following relations hold:

1. (|ψ〉+ |ψ′〉)⊗ |φ〉 = |ψ〉 ⊗ |φ〉+ |ψ′〉 ⊗ |φ〉

2. |ψ〉 ⊗ (|φ〉+ |φ′〉) = |ψ〉 ⊗ |φ〉+ |ψ〉 ⊗ |φ′〉

3. (α |ψ〉)⊗ |φ〉 = |ψ〉 ⊗ (α |φ〉) = α(|ψ〉 ⊗ |φ〉)

where α ∈ C and φ′ ∈ U and ψ′ ∈ V are arbitrary vectors.

Let HA and HB be two Hilbert spaces. The tensor product HA ⊗ HB becomes a Hilbert

space when endowed with the inner product:

〈ψ ⊗ φ|ψ′ ⊗ φ′〉 = 〈ψ|ψ′〉 〈φ|φ′〉

to a sesquilinear form 〈·|·〉 : HA ⊗HB ⊗HA ⊗HB → C

To see how the tensor product acts on operators let Â : HA → HA and B̂ : HB → HB

be linear operators on the spaces HA and HB respectively. The tensor product Â⊗ B̂ is

the linear operator on HA ⊗HB whose action on a product vector is:

(Â⊗ B̂)(|ψ〉 ⊗ |φ〉) = Â |ψ〉 ⊗ B̂ |φ〉 (2.20)

19



We finish with a few additional properties regarding the tensor product and linear oper-

ators:

1. If both Â and B̂ are normal or self adjoint or unitary or positive then so is Â⊗ B̂.

2. If Â and B̂ both have spectral decompositions Â =
∑

i λi |χi〉〈χi| and B̂ =
∑

j νj |µj〉〈µj|

for the orthonormal bases {|χ1〉 , . . . , |χdA〉} ∈ HA and {|µ1〉 , . . . , |µdB〉} ∈ HB
4,

then:

Â⊗ B̂ =
∑
ij

λiνj |χi〉〈χi| ⊗ |µj〉〈µj| =
∑
ij

λiνj |χi ⊗ µj〉〈χi ⊗ µj|

and its spectrum is : σ(Â⊗ B̂) = {λν : λ ∈ σ(Â), ν ∈ σ(B̂)}.

3. The trace: Tr(Â⊗ B̂) = Tr(Â)Tr(B̂)

3 Density matrix formalism

3.1 Density matrices

We shall now move on to discuss the density matrix (operator) formalism, as a density

matrix contains the equivalent information to our quantum state |ψ〉. We use the density

operator language as it is notationally much more convenient to use. Another nice prop-

erty of the density matrix is that its structure provides us with the probability distribution

of all the possible measurements of the given system.

Definition 3.1. Let {|ψ1〉 , . . . , |ψd〉} be an orthonormal basis on H, then the operator

ρ =
∑

i pi |ψi〉〈ψi| on H, such that
∑

i pi = 1 is called a density matrix if it has the

following properties:

Positivity: ρ ≥ 0

Unit trace(normalisation): Tr(ρ) = 1

4dA and dB represent the respective dimensions of the spaces.
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These conditions also hold true for what are called reduced (partial) states, which are

states that contain information about one system of our composite space, we shall discuss

reduced states in more detail later on.

In order to relate the density matrix to our linear operator Â, we recall the eigenvalue

equation (1.4) and state that our operator Â has eigenvalues λi such that Â |χi〉 = λi |χi〉,

where |χi〉 are the normalised eigenkets that form a complete set {|χi〉}. Thus if we have

a normalised state such that |ψ〉 =
∑

i ai |χi〉, then we can define the expectation value

of Â with respect to the state |ψ〉 as:〈
Â
〉
ψ

=
〈
Â
〉

= 〈ψ|Â|ψ〉 =
∑
i

λi|ai|2 (3.1)

where |ai|2 is the probability of getting the outcome λi, such that
∑

i |ai|2 = 1 and

the expectation value
〈
Â
〉
ψ

is the mean value found from multiple measurements on an

ensemble of identically prepared systems. To relate this back to our density operator we

say that if the state vector is known then a density operator of the form:

ρ = |ψ〉〈ψ| (3.2)

is called a pure state, this allows us to define the expectation value of Â as:〈
Â
〉

= Tr
(
|ψ〉〈ψ| Â

)
= Tr(ρÂ) (3.3)

However, if the state is mixed then we have a density matrix of the form:

ρ =
∑
i

pi |ψi〉〈ψi| (3.4)

and so our expectation value is defined as:〈
Â
〉

= Tr(
∑
i

pi |ψi〉〈ψi| Â) = Tr(ρÂ) (3.5)

We can also define the matrix elements ρji of the density operator in any basis {|χj〉} as:

ρji = 〈χj|ρ|χi〉 = ρ∗ij (3.6)
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3.2 Partial trace and reduced states

We are almost ready to talk about partial states, but before we can we must discuss the

concept of the partial trace. The partial trace enables us to construct reduced states, as

it only acts on one of the terms in the tensor product, leaving the other unchanged.

Definition 3.2. Let Â⊗B̂ be a tensor product operator on the space HA⊗HB. Its partial

traces over HA and HB are the operators on HA and respectively HB, defined as:

TrB(Â⊗ B̂) = Â · Tr(B̂)

TrA(B̂ ⊗ Â) = B̂ · Tr(Â)

Any linear operator X̂ on HA⊗HB can be written as a linear combination of rank one

tensor products, since the partial trace can be extended by linearity to all operators[Gut15]:

X̂ =
∑

iA,jA,iB ,jB

XiAjA,iBjB |χiA〉〈χiB|⊗|µjA〉〈µjB| =
∑

iA,jA,iB ,jB

XiAjA,iBjB |χiA ⊗ µjA〉〈χiB ⊗ µjB|

for orthonomal bases {|χ1〉 , . . . , |χdA〉} and {|µ1〉 , . . . , |µdB〉} then:

TrB(X̂) =

dA∑
iA,iB=1

(
dB∑
j=1

XiAj,iBj

)
|χiA〉〈χiB | (3.7)

TrA(X̂) =

dB∑
jA,jB=1

(
dA∑
i=1

XijA,ijB

)
|µjA〉〈µjB | (3.8)

The partial trace has the following important properties:

1. Taking both partial traces give the trace:

TrA(TrB(X̂)) = TrB(TrA(X̂)) = TrAB(X̂) = Tr(X̂) =
∑
i,j

Xij,ik

2. Partial trace of rank one operators:

TrB(|χ〉〈χ′| ⊗ |µ〉〈µ′|) = |χ〉〈χ′| · Tr(|µ〉〈µ′|) = 〈µ′|µ〉 |χ〉〈χ′|

3. The partial trace is not cyclic:

TrA(X̂Ŷ ) 6= TrA(Ŷ X̂)
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4. The partial trace of a positive operator is a positive operator:

X̂ ≥ 0⇒ TrA(X̂) ≥ 0 and TrB(X̂) ≥ 0

Now that we have the required formalism in place, we are in a position to discuss the idea of

a reduced state. A reduced state on a bipartite system has exactly the same properties as

a density matrix, except it only contains information about one of the systems. Formally

we say that for some Hilbert space H = HA ⊗HB, if |ψ〉 ∈ HA ⊗HB is a pure bipartite

state, then the partial states of the two subsystems are given by the density matrices:

ρA = TrB(|ψ〉〈ψ|) (3.9)

ρB = TrA(|ψ〉〈ψ|) (3.10)

With the tools now in place, we are in a position to discuss the ideas and concepts

regarding entanglement.
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Chapter 2

Entanglement

In this chapter the reader shall be introduced to the foundations of entanglement, its

importance and uses throughout quantum information science. The reader shall also

be introduced to the difficulties the quantum community faces in trying to understand

multipartite entanglement. We introduce also the notions for what it means for a state,

specifically a bipartite state, to be entangled and ways in which we can quantify this

entanglement.
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4 The birth of entanglement

Entanglement was first described by Einstein, Podolski and Rosen (EPR) [EPR35] to

demonstrate the conceptual differences between the quantum world and the classical

world. Published in 1935, their paper argued that quantum mechanics was not a complete

theory of Nature; that being there are hidden variables which are yet to be discovered.

They showed this by presenting an example of an entangled quantum state, to which it is

not possible to attribute some precise classical meaning that allows us to understand its

behaviour with certainty. This stems from the fact that although the predictive powers of

quantum mechanics are much greater than those of classical mechanics, classical systems

deal with objects that are completely deterministic, which is the complete opposite to the

quantum world, where we must consider all possible paths that our object can take. We

can not attribute a definitive value, but we can say probabilistically what its outcome will

be, as we know all possible outcomes of our quantum object (observable) are determined

by the spectrum of the linear operator that represents it.

This strange nature of reality led EPR to assume that quantum mechanics was incom-

plete. The ideas presented by EPR were kept at the back of the minds of many a physicist,

for many a decade and to some extent still play on the minds of those who have yearning

for casuality.

But why? Well, quantum mechanics explained the behaviour of the nano-world and

paved the way for semi-conductors, lasers and many other revolutionary areas of physics

and technological advances. The problem was, quantum mechanics conceptually was un-

satisfactory as a fundamental theory of Nature and the EPR argument enhanced that

skepticism. It was not until 1964 when John Bell published his paper [B+64], regarding

the validity of the EPR assumptions, that quantifying what it means for an object to be

classical became a possibility. In the paper, Bell does not make any assumption about

quantum mechanics. But instead assumes that our notion of a classical view of the world

is true. In order to show this he considered a thought experiment where two causally

disconnected observers share many identical pairs of physical systems (represented by the
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random variables Xi and Yj) and are allowed to perform two different types of measure-

ments on their respective systems (represented by the Pauli matrices). The measurements

performed in each pair are chosen at random and correspond to elements of ‘reality’. The

expectation values of these observables depend on the probability associated with a given

outcome and the actual value of the outcome. Bell then derived a set of inequalities,

which are more succinctly written in the CHSH form, that bound the expectation value

of a linear combination of the observables. However, certain entangled states will vio-

late these inequalities. In order to understand whether or not the inequality is violated

we must perform an experimental test of Bell’s inequalities, from which we can deduce

whether or not the EPR assumptions are correct or quantum mechanics is indeed a true

description of the world. This test was first experimentally realised with entangled pairs

of photons in 1982 [AGR82] and it demonstrated the violation of Bell’s inequalities, which

therefore implies that quantum mechanics is a true description of the world. This type of

experimental test has subsequently been used to detect entanglement experimentally in

other physical systems [VWZ02].

4.1 The mathematical definition of entanglement

The intricacies of defining what it means for something to be experimental entangled and

mathematical entangled, almost look as if they are completely different descriptions of

the same thing. Quite simply, mathematically one would say that a bipartite state is

entangled if it cannot be written in the following way:

|ΨAB〉 = |ΨA〉 ⊗ |ΨB〉 (4.1)

That is, we cannot write the state |ΨAB〉 ∈ HAB as the tensor product of two separate

states |ΨA〉 ∈ HA and |ΨB〉 ∈ HB. If a bipartite state can be written in this form then it

is called separable. The Schmidt decomposition is a more generalised form of this result

and is encapsulated in the following definition:

Definition 4.1. Let |ψ〉 be a pure state of a composite system HA ⊗ HB. Then there

exists an integer r ≤ min(dA, dB), and two sets of orthonormal vectors {|χ1〉 , . . . , |χr〉}
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in HA and {|µ1〉 , . . . , |µr〉} in HB such that:

|ψ〉 =
r∑
i=1

√
λi |χi〉 ⊗ |µi〉 (4.2)

where λi are strictly positive and satisfy
∑r

i=1 λi = 1. The coefficients
√
λi are called the

Schmidt coefficients of |ψ〉.

From this expression we may extract the reduced states, for system A:

ρA =
r∑

ij=1

√
λiλjTrB(|χi ⊗ µi〉 〈χj ⊗ µj|)

=
r∑

ij=1

√
λiλjTrB(|χi〉〈χj| ⊗ |µi〉〈µj|)

=
r∑
i

λi |χi〉〈χi| (4.3)

likewise for system B we obtain:

ρB =
r∑
j=1

|µj〉〈µj| (4.4)

Thus the two partial states have the same non-zero eigenvalues and eigenstates |χi〉 and

|µj〉 respectively. The number r is called the Schmidt rank and together with the eigenval-

ues µ it quantifys the amount of entanglement between the systems A and B. A Schmidt

rank greater r > 1 means that we have an entangled state.

4.2 Bell’s inequalities in the CHSH form

In order to experimentally determine weather or not a state is entangled, it is a question

of measurement and we must look at the statistical distributions of the observables and

see whether or not we violate Bell’s inequalities.

But what exactly are Bell’s inequalities? Well, referring back to our original discussion

we have two distant observers Alice and Bob who share many identical pairs of particles.

Alice and Bob can perform two different measurements on there respective particles,

represented by the random variables XA1 , XA2 for Alice and YB1 , YB2 for Bob. The
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individual measurements are chosen randomly and have two possible outcomes {−1, 1}.

In the Clauser,Horne,Shimony and Holt (CHSH) form Bell’s inequalities read:

E(XA1YB1) + E(XA2YB1) + E(XA2YB2)− E(XA1YB2) ≤ 2 (4.5)

We can prove (4.5) as follows [Gut15]:

XA1YB1 +XA2YB1 +XA2YB2 −XA1YB2 = (XA1 +XA2)YB1 + (XA2 −XA1)YB2 (4.6)

Since XA1 , XA2 ∈ {−1, 1} it follows that either XA1 +XA2 = 0 or XA1−XA2 = 0, therefore

(4.6) is equal to ±2. If the joint distribution of (XA1 , XA2 , YB1 , YB2) is:

p(i, j, k, l) = P(XA1 = i,XA2 = j, YB1 = k, YB2 = l)

then by taking the expectation of (4.6) we find:

E(XA1YB1) + E(XA2YB1) + E(XA2YB2)− E(XA1YB2) =
∑

ijkl∈{+1,−1}

p(i, j, k, l)(ik + jk + jl − il)

=
∑

ijkl∈{+1,−1}

p(i, j, k, l)2 = 2 �

where the expectation value over the composite system with respect to some Bell basis

state |ψ〉 is defined as:

E(X̂AiŶBj) = 〈ψ|X̂Ai ⊗ ŶBj |ψ〉 = Tr[(P̂Ai ⊗ P̂Bj)| |ψ〉〈ψ|] (4.7)

where P̂Ai and P̂Bj are the eigenprojectors of Alice and Bob’s observables respectively,

corresponding to a particular outcome. In the quantum experiment Alice has operators,

X̂A1 = σ3 and X̂A2 = σ1 and Bob has operators ŶB2 = −(σ3+σ1)√
2

and ŶB2 = (σ3−σ1)√
2

. The

Bell basis states are a set of entangled bipartite states that form an orthonormal basis

and are defined as:

|φ+〉 =
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)√

2
(4.8)

|φ−〉 =
(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)√

2
(4.9)

|ψ+〉 =
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)√

2
(4.10)

|ψ−〉 =
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)√

2
(4.11)
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These definitions of entanglement make entanglement look like a rather simple and well

understood concept, but in reality the truth is quite different. These ideas only hold for

bipartite systems, not multipartite systems5 which are incredibly difficult to understand

theoretically and generate experimentally. However, research in to entanglement has never

been greater, it is an exciting area of quantum information science; both experimentally

and theoretically. The idea of what it means for something to be entangled has been

stripped to its core [AFOV08] [VPRK97a] [GF07] and a great body of work is currently

being produced about it. However, can anyone say that we understand the fundamentals

of entanglement, probably not. What we can say however is that we are finding a way to

decrypt it. In fact, it is even believed now that entangled systems are just a subset of a

more fundamental quantum property, quantum discord [OZ01][DLM+12].

4.3 Importance of entanglement

Although we do not truly know all of the potential uses of entanglement at this moment in

time, for systems where entanglement can be used as some kind of information resource

we see something remarkable. On the basic level what makes quantum mechanics so

fascinating is the concept of linear superstition, where we have so called “Schrödinger

cat” states that are in some superposition state:

|ψ〉 = α |0〉+ β |1〉 (4.12)

where α, β ∈ C and |0〉 and |1〉 are qubit basis states, typically represented by the vectors:

|0〉 =

 1

0

 , |1〉 =

 0

1


Combining the property of linear superposition and entanglement, we can entangle several

copies of these states and so in theory we could construct a quantum computer that would

have an exponential speed as compared to its classical counter part. This is because each

5There are methods to extend Bell’s inequalities to multipartite states [idZB02], however there are

additional complexities with this.
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qubit is N = 2n bits, where N is the number of classical bits required, and n the number

of qubits, i.e. a 6-qubit quantum computer contains the same information as N = 64-

bit classical computer. Even a small n-qubit quantum computer could solve problems

multiple times faster than our classical N -bit super computers. This of course has cre-

ated an immense amount of buzz in the field of quantum information science. However,

theoretically these “Schrödigner cat” states are easy to construct, but experimentally it

is incredibly challenging as the system has to be completely isolated from outside noise.

This is because the noise either causes the state to decohere back in to a classical bit or

errors are induced, which we have to somehow account for. Classically, correcting errors is

incredibly simple as we can make observations without destroying our deterministic state.

This is not true quantum mechanically, as we can not perform multiple measurements on

our system, if we would like it to remain in a state of linear superposition. This therefore

means that we potentially have to be able to correct for an exponential amount of errors,

of course destroying any potential speed up. However, we should not be so disheartened,

research on an industrial scale is being carried out by the likes of Google, IBM, Toshiba

and many other technological giants. It is believed that it will be and can be done, but

when, well that is to be determined.

Other information resource uses of entanglement are primarily security based, such as

quantum key distribution [Eke91] and quantum teleportation [BBC+93]. The name quan-

tum teleportation is slightly misleading as we are not teleporting anything as such. When

we talk about quantum teleportation, we refer to transferring the properties of a state

that is coupled to Alice’s system, to Bob’s system via measurement and classical commu-

nications. In performing this process we destroy the original state, but via the information

that Bob has received from the classical communications he is able to construct an exact

replica of the state that Alice wanted to send. In this sense the state is ‘teleported’ from

Alice to Bob.

What we have given here is purely a very brief overview of some of the more prominent
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uses of entanglement, there are also several algorithms that we could have discussed, in

particular Shor’s algorithm [Sho96], which using the properties of quantum mechanics can

factor prime numbers in a polynomial time. The uses of entanglement are only just being

explored and the area as a whole is going through a wonderful age of discovery.

5 Measures of entanglement

After all that has been discussed regarding entanglement, you are probably beginning to

wonder how do we actually quantify the amount of entanglement for a given system. For

the systems that we are dealing with, it is relatively easy since they are pure bipartite

systems and so there is a strong base of theory to describe the entanglement within these

systems. However, the same is not true for mixed states and is especially not true for

multipartite states.

5.1 Entanglement measures

A lot of work has been done by the quantum information community in order to formalise

the idea of an entanglement measure. From this body of work came a list of axioms that

are generally believed to be the minimum requirement that any Entanglement measure

E(ρ) should satisfy[PV07][VPRK97b]:

1. E(ρ) = 0 iff ρ is separable.

2. Local unitary operations leave E(ρ) invariant, i.e. E(ρAB) = E(ÛA⊗ÛBρABÛ †A⊗Û
†
B)

3. E(ρ) is additive. The entanglement of several copies of a state adds up to n times

the entanglement of a single copy i.e. E(ρ⊗n) = nE(ρ).

4. E(ρ) is subadditive. The entanglement of two states is not larger than the sum of

the entanglement of both individual states i.e. E(ρa ⊗ ρb) ≤ E(ρa) + E(ρb)

5. E(ρ) is convex. E(λρa + (1− λ)ρb) ≤ λE(ρa) + (1− λ)E(ρb) , for 0 ≤ λ ≤ 1.
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6. For a pure bipartite state ρAB, E(ρAB) reduces to the entropy of entanglement (5.1),

E(ρAB) = S(TrA(ρAB)) = S(TrB(ρAB))

I should however state that there is no completely agreed upon list of axioms, although

most authors will either use the axioms listed above, or a subset of them. The next remark

will seem rather contradictory, but it is important to emphasise that the field is still in

a rapid phase of development. Some of the most important entanglement measures do

not actually satisfy some the above axioms [PV07] and so we should always approach the

situation we are dealing with, with some degree of caution.

We shall now introduce just a few entanglement measures for bipartite systems. One

entanglement measure in particular is more dominant than the others, whose origins lie

in thermodynamics and was later popularised and modified by Von-Neumann. It is of

course the Von-Neumann entanglement entropy, which was included in our entanglement

measure axioms. It is a quantity that enables us to understand the amount of information

in a given quantum state and is defined as:

S(ρ) = −ρ ln ρ =
∑
i

λi ln(λi) (5.1)

where the Borel theorem has been used in order to write the Von-Neumann entanglement

entropy in terms of the states spectrum. The Von-Neumann entanglement entropy is

one of the few entanglement measures that actually satisfies all necessary criteria for an

entanglement measure, it is also the reason why it is one of the most widely used methods

for quantifying the entanglement within quantum systems. It shall also be one of our key

entanglement measures for quantifying the entanglement in both the hydrogen atom and

our toy model.

The Von-Neumann entanglement entropy can also be seen as a degree for understanding

how mixed a state is. In light of this interpretation we introduce another quantity, the

linear entropy, which is defined as[ZHP93]:

SL =
1

q − 1
Tr(ρ− ρq) (5.2)
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where q is a real, not necessarily positive number. As q approaches 1, we recover the

Von-Neumann entanglement entropy. When q = 2, which is the case for us, the linear

entropy reduces to:

SL = 1− Tr(ρ2) = 1−
∑
i

λ2i (5.3)

which can be seen as follows:

1

1
[Tr(ρ)− Tr(ρ2)]

since the trace of any density matrix must be 1, we have (5.3). The linear entropy, like

the Von-Neumann entanglement entropy also determines the degree of mixing in a state

and will also play an important role in quantifying the entanglement in the systems that

we shall investigate later. The following two entanglement measures shall not be used in

this dissertation, but are merely given to give the reader an idea of just some of the tools

that are currently available.

Our next measure of entanglement enables us to compare our state of interest ρ with some

unentangled state ρue =
∑

i piρ
i
A⊗ ρiB, where the pi are positive and satisfy

∑
i pi = 1. In

comparing the given state and the unentangled state we gain a quantitative measure of

entanglement. From which we construct the trace distance, which is the distance between

our state and the nearest unentangled state[AFOV08][PWK04]:

Dent(ρ) = Infρue
1

2
|ρ− ρue| (5.4)

where the state ρue is chosen to give the minimum distance. This measure enables us

to identify the unentangled state most similar to our entangled state and quantify the

entanglement by our ability to discriminate between the two. As example let us consider

the two-qubit entangled state:

ρ = cos2(θ) |0〉 |0〉+ sin2(θ) |1〉 |1〉

where the nearest unentangled state is:

ρue = cos2(θ) |0〉〈0| ⊗ |0〉〈0|+ sin2(θ) |1〉〈1| ⊗ |1〉〈1|
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and so the associated distance is:

Dent = | cos(θ) sin(θ)| (5.5)

This is of course zero for cos(θ) = 0 or sin(θ) = 0, but is maximal when θ = π
4

and so our

entangled state corresponds directly to a Bell basis state.

The next and final measure of entanglement that we shall discuss is concurrence, which

along with the Von-Neumann entanglement entropy is one of the few measures that can

be applied to multipartite states. We start by introducing the spin flip transformation,

for a single qubit, which takes the form6:

ρ→ ρ̄1 = σ2ρ
∗σ2 (5.6)

From [Gut15] we know that we can represent a qubit in terms of the pauli ‘spin’ operators

and the position vector r as follows7:

ρ =
1

2
(Î + r · σ) (5.7)

The effect of this transformation changes the sign to a minus sign and so:

ρ̄1 =
1

2
(Î − r · σ) (5.8)

We can extend this transformation naturally to two-qubits by:

ρ̄2 = σ2 ⊗ σ2ρ∗σ2 ⊗ σ2 (5.9)

from which we construct a positive operator R̂ in terms of ρ and ρ̄2 as:

R̂ =
√
ρρ̄2
√
ρ (5.10)

Let the four positive eigenvalues of R̂ be, in terms of decreasing size, λ1, . . . , λ4. The

concurrence C(ρ) for an entangled state ρ is defined to be [Woo98]:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (5.11)

The concurrence takes a zero value for an unentangled state and a positive value for an

entangled state. For several examples and more insight see[Woo98].

6This is related to the notation of a quantum channel, see [Gut15]
7Here r · σ = riσi, where i = 1, . . . , 3.

34



5.2 Many body entanglement

Many body entanglement is in its own right an incredibly vast, yet rich area of study,

that is full of questions and answers regarding the complexity of entanglement. It is no

exaggeration to say that trying to understand what multipartite entanglement is, is a bit

like putting together a jigsaw puzzle with thousands of pieces, which has no picture, yet

has the ability to change depending on what pieces are connected. If that analogy sounds

complicated, it is because multipartite entanglement is complicated. We shall however

try and give a very brief overview of the ideas developed to understand entanglement in

multipartite systems.

Our previous definitions for a bipartite system which defined whether or not a state is

entangled are no longer useful, as if we have a multipartite state i.e. |φ〉 = |ψ1〉⊗. . .⊗|ψd〉,

where d > 2, then the state may have several decompositions, some of which are entangled

and some of which are not. In addition to this, different parts of the system may also

be entangled and actually determining whether a multipartite state is entangled is an

NP-hard problem.

Thankfully, not all is hopeless, there are ways in which we can tackle parts of this problem.

One such solution is the introduction of an Entanglement witness, W , a special type of

positive map. It is a self-adjoint operator which is able to detect entanglement in a state.

The basic idea is [VPRK97a] that the expectation value of the witness W for the state

ρ under consideration exceeds certain bounds only when ρ is entangled. An expectation

value of W within this bound, however, does not guarantee that the state is separable.

Simple geometric ideas help to explain the witness operator W at work [VPRK97a]. Let T

be the set of all density matrices and let E and S be the subsets of entangled and separable

states, respectively. The convexity of S is a key property for witnessing entanglement.

The entanglement witness is then an operator defining a hyperplane which separates a

given entangled state from the set of separable states. We have the freedom to chose

W such that Tr(ρSW ) ≤ 0 for all disentangled states ρS ∈ S and so for Tr(ρEW ) > 0

implies that ρE ∈ E is entangled. A problem with the method is that it is not invariant
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under local unitary operations [VPRK97a].

Another concept that we may look at is the negativity, which is a way to detect the

presence of entanglement in multipartite systems. Consider, for example, a bipartite

state ρAB which lives on the space HA ⊗ HB. If we calculate a state ρTiAB, where Ti is

the partial transpose of state i = A or B, then finding the sum of the absolute negative

eigenvalues of this state, gives the negativity NAB ,from which we define the logarithmic

negativity for a bipartite system as:

EN = log2 2(2NAB + 1) (5.12)

As a final point let us mention very briefly, in a non-mathematical context, the ideas

regarding pairwise qubit entanglement in mixed states. The reason we must turn to mixed

states is because in general the subsystems of a many-body pure state will generally be

in a mixed state. To deal with this three important representatives were introduced in

order to quantify the entanglement in the system, they are; the entanglement cost EC , the

distillable entanglement ED and the entanglement of formation EF . We shall not go in to

more detail than this, purely due to complexity. For the interested reader see[VPRK97a]

for a much deeper and more in depth explanation of EC , ED and EF and multipartite

entanglement.
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Chapter 3

Entanglement in physical systems

In this chapter we aim to show the reader a derivation of the hydrogen atom in both the

position and momentum space representations. We then aim to show how entanglement

arises in the hydrogen atom due to the electrostatic interaction between the electron and

proton, and how the amount of entanglement within the system can be quantified in

terms of an ‘entanglement parameter’. This is not a parameter in the usual sense, but is

dictated by the interaction between the quantum particles. We then go on to use the ideas

presented in the case of the entangled hydrogen atom, to discuss and analyse a system of

two interacting coupled bosonic quantum particles, the system is almost identical to the

two coupled oscillator model. This system has a different entanglement parameter and a

different type of interaction through which it becomes entangled.
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6 Electron-proton entanglement in the three dimen-

sional hydrogen atom

The electron-proton system is studied at least once in all undergraduate quantum me-

chanics modules, due to the fact that it is one of the few systems in quantum mechanics

where Schrödinger’s equation can be solved completely analytically. The fact that we can

do this, means not only do we have something robust that we can test physically, but we

can also probe the system a little more and see if we can extract anymore information.

6.1 The hydrogen atom in the position representation

The starting point for understanding any system in quantum mechanics begins with the

Schrödinger equation, see chapter one. Given in the form of state vectors it is not so easy

to see that Schrödinger’s equation is actually some nth-order partial differential equation

(PDE), which in the case of the hydrogen atom is a 2nd-order PDE. To analyse the

hydrogen atom (see fig. 1) we require the form of the Hamiltonian operator, as with the

Hamiltonian in the classical sense, the Hamiltonian operator describes the dynamics of

the system. However, instead of in a deterministic sense, it is in terms of the spectral

data of the state. Where the spectral data allows us to calculate a set of probabilities for

our given system. For the hydrogen atom, the general Hamiltonian operator is written in

the form:

Ĥ =
p̂2e

2me

+
p̂2p

2mp

− e2

4πε0|re − rp|
(6.1)

where the kinetic term is represented by p̂2
e

2me
+

p̂2
p

2mp
and the electro-static repulsion be-

tween the electron and proton is described by the central potential V (r) = − e2

4πε0|re−rp| .

Unfortunately, the Hamiltonian expressed in this form can not be written as the product

of separable solutions i.e. it can not be written as the tensor product of two states and

so is incredibly difficult to solve. But, with a little mathematical trickery and making the

38



Figure 1: A classical picture of the hydrogen atom, which consists of one proton and one

‘orbiting’ electron [Hyp14].

following co-ordinate transforms:

r = re − rp (6.2)

R =
mere +mprp
me +mp

(6.3)

where r is the relative co-ordinate, R is the co-ordinate at the centre of mass, we shall

find that our Hamiltonian splits into two uncorrelated systems. Written in terms of our

co-ordinate transform, the electron and proton positions are defined as:

rp = R+
me

M
r

re = R− mp

M
r

using these definitions we must also redefine the differential operators ∇2rp and ∇2re

of the respective momentum operators. Focusing on just one co-ordinate and using the

chain rule, i.e. the x-co-ordinate of the proton, we write:

∂ψ

∂xp
=

∂ψ

∂Rx

∂Rx

∂xp
+
∂ψ

∂rx

∂rx
∂xp

∂2ψ

∂x2p
=

∂

∂Rx

(
∂ψ

∂xp

)
∂Rx

∂xp
+

∂

∂rx

(
∂ψ

∂xp

)
∂rx
∂xp

=
(mp

M

)2 ∂2ψ
∂R2

x

+

(
2mp

M

)
∂2ψ

∂Rx∂rx
+
∂2ψ

∂r2x
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likewise for ∂2ψ
∂x2e

we get the following:

∂2ψ

∂x2e
=
(me

M

)2 ∂2ψ
∂R2

x

−
(

2me

M

)
∂2ψ

∂Rx∂rx
+
∂2ψ

∂r2x

from which we can see that if we did this for the respective y and z co-ordinates that we

would get the following expressions:

∇2rp =
(mp

M

)2
∇2

R +

(
2mp

M

)
∇R∇r +∇2r (6.4)

∇2re =
(me

M

)2
∇2

R −
(

2me

M

)
∇R∇r +∇2r (6.5)

Therefore inserting these expressions back into (6.1) we get the following uncorrelated

Hamiltonian:

Ĥ = Ĥcm + Ĥint =
p̂2R
2M

+
p̂2r

2mr

− e2

4πε0|r|
(6.6)

where Ĥcm is the Hamiltonian at the centre of mass and Ĥint is the internal Hamiltonian

dependent on the relative co-ordinate r, mr is the reduced mass defined as:

mr =
memp

me+mp

and M is the total mass defined as:

M = mp +me

The following uncorrelated Hamiltonian now allows for separable solutions of the form:

Ψ(R, r) = χ(R)φ(r) (6.7)

We can now insert (6.7) and our uncorrelated Hamiltonian in to Schrödigner’s equation

to get the following:(
p̂2R
2M

+
p̂2r

2mr

)
χ(R)φ(r)−

(
e2

4πε0|r|
− E

)
χ(R)φ(r) = 0

φ(r)Ĥcmχ(R) + χ(R)Ĥintφ(r) = Eχ(R)φ(r)

where the total energy E is defined as[Oss13] E = E ′cm + E ′int which gives us:

φ(r)[Ĥcmχ(R)− E ′cmχ(R)] = −χ(R)[Ĥintφ(r)− E ′intφ(r)]
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We then divide through by the separable solution χ(R)φ(r) to get two equations that

are dependent on different variables, but are equal to one another. Therefore, since these

equations are independent, both equations must be equal to some constant, i.e. E0. So

we re-label the energies as Ecm = E ′cm + E0 and Eint = E ′int − E0 to get:

Ĥcmχ(R) = Ecmχ(R) (6.8)

Ĥintφ(r) = Eintφ(r) (6.9)

(6.8) can be shown quite simply to have plane wave solutions:

χ(R) =
1√
V
e(iK·R) (6.10)

where the solutions have been normalised by the box normalisation scheme [TTdTP98],

K = P
~ is the wave-vector and P is the momentum at the centre of mass. The factor 1√

V

comes from the box normalisation scheme, which assumes that the ‘particle’ is confined

to a large volume V . This regularisation is subtle, but is actually incredibly important

as it ensures that the thermodynamic limit is satisfied. This in turn allows us to use our

entanglement measures, well specifically the Von-Neumann entanglement entropy.

6.2 The angular solution

The difficult part is finding the solution to the relative part, due to the internal motion

solution being dependent on the radial and angular variables. This is due to the fact

that the potential, which is only dependent on the radial distance from the origin, is

spherically symmetric. Thus the internal Hamiltonian has a solution which is separable

in to spherical co-ordinates (r, θ, φ):

φ(r) = R(r)Y (θ, φ) (6.11)

But since our Laplacian for the internal Hamiltonian is written in terms of the relative

distance, we must re-write it in terms of spherical co-ordinates:

∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

(
∂2

∂φ2

)
(6.12)
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Inserting (6.12) into (6.9) we get:

− h2

2mr

[
Y (θ, φ)

r2
∂

∂r

(
r2
∂R(r)

∂r

)
+

R(r)

r2 sin(θ)

(
sin(θ)

∂Y (θ, φ)

∂θ

)
+

R(r)

r2 sin2(θ)

(
∂2Y (θ, φ)

∂φ2

)]
+ (V (r)− Eint)R(r)Y (θ, φ) = 0 (6.13)

we then multiply through by −2mrr2
h2R(r)Y (θ,φ)

:[
1

R(r)

∂

∂r

(
r2
∂R(r)

∂r

)
− 2mrr

2

h2
(V (r)− Eint)R(r)

]
= − 1

Y (θ, φ)

[
1

sin(θ)

∂

∂θ

(
sin(θ)

∂Y (θ, φ)

∂θ

)
+

1

sin2(θ)

(
∂2Y (θ, φ)

∂φ2

)]
= l(l + 1) (6.14)

which produces two independent equations. Therefore the only way for this statement

to be true, is if the equations are both equal to the same constant. With hindsight

available to us, we choose the constant to be l(l + 1) , the eigenvalues to the angular

momentum squared operator L̂
2

= L̂2
x + L̂2

y + L̂2
z, where l = 0, 1, 2, . . . will become our

angular momentum quantum number. Focusing on the angular equation for Y (θ, φ) first

we notice that if we multiply by Y (θ, φ) sin2(θ) that we have a separable solution of the

form:

Y (θ, φ) = Θ(θ)Φ(φ) (6.15)

putting (6.15) back in to the angular equation and dividing through by Θ(θ)Φ(φ) we get:

1

Θ(θ)

[
sin(θ)

d

dθ

(
sin(θ)

dΘ(θ)

dθ

)]
+ l(l + 1) sin2(θ)

= − 1

Φ(φ)

d2Φ(φ)

dφ2
= m2 (6.16)

where m2 is our separation constant and leads to the magnetic quantum number m. Solv-

ing for the φ dependent equation is straight forward using standard ordinary differential

techniques, from which we get:

Φ(φ) = Ae(imφ) (6.17)

where m = . . . ,−2,−1, 0, 1, 2, . . . and the constant factor can be absorbed into Φ. The

reason why we have not written two linearly independent solutions is because m ∈ Z.

This is due to the fact that in the complex plane, if we rotate by 2π we get back to our
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initial value i.e. Φ(φ+ 2π) = Φ(φ) is 2π-periodic. This implies e(i2πm) = 1, which is true

for all m ∈ Z.

Returning now to the equation for θ and trying to solve is a little more involved. Thank-

fully, as it is in the form of Legendre’s equation(see appendix B) we can write the solution

as:

Θ(θ) = APm
l (cos(θ)) (6.18)

where Pm
l is called the associated Legendre function. The reason why there only exist

one independent solution is because in order to avoid singularities, the constant of the

non-polynomial solution is set to zero8. The associated Legendre function is generated in

the following way:

P
|m|
l (w) = (1− w2)

|m|
2 (

d

dw
)|m|Pl(w) (6.19)

and Pl(w) is the lth Legendre polynomial which can be generated via Rodrigues formula:

Pl(w) =
1

2ll!
(
d

dw
)l(w2 − 1)l (6.20)

Now the associated Lengendre functions satisfy the following orthogonality relation:∫ 1

−1
P
|m|
l (w)P |m|n (w)dw =

2

2l + 1

(l + |m|)!
(l − |m|)!

δln (6.21)

and so the associated Lengendre functions satisfy the completeness relation for an infinite

Hilbert space. We see also from equation (6.19) that Pm
l = 0 for any m > l, thus for any

given l there are 2l + 1 given values of m and so the possible values of m are:

m = −l, l + 1, . . . ,−1, 0, 1, . . . , l − 1, l

We now have one final task to complete before we can write down our angular solution,

that being we must now find the normalisation constant A. Using the orthogonal relation:∫
Y ∗l′,m′(θ, φ)Yl,m(θ, φ)dΩ = δll′δmm′ (6.22)

we find that A is equal to:

A = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!

8See appendix B for a discussion on Legendre polynomials
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Thus our normalised angular wavefunctions, called spherical harmonics, are found to be:

Ylm(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))e(imφ) (6.23)

6.3 The radial and complete solution

All that is left to solve is the radial component, equation (6.14). To do this we first make

the substitution R(r) = s(r)
r

, which makes our radial equation:

−h2

2mr

d2s

dr2
+

[
− e2

4πε0

1

r
+

~2

2mr

l(l + 1)

r2

]
s(r) = Eints(r) (6.24)

We can tidy up this equation by introducing the following parameters:

κ =

√
−2mrEint

h
(6.25)

ρ = κr (6.26)

ρ0 =
me2

2πε0h2κ
(6.27)

which results in the following:

d2s

dρ2
=

[
1− ρ0

ρ
+
l(l + 1)

ρ2

]
s(ρ) (6.28)

Rather than directly solving the problem, we first look at the asymptotic behaviour of

(6.28) for large and small ρ, which allows us to guess a form for our general solution. For

large ρ we find that:

s(ρ) ∼ Ae−ρ (6.29)

where the constant for eρ has been set to zero, to ensure that the radial function does not

blow up for large ρ. Likewise as ρ tends to 0 we find:

s(ρ) ∼ Bρl+1 (6.30)

which does not blow up for small ρ. Using the asymptotic behaviour we introduce a new

function t(ρ) :

s(ρ) = ρl+1e−ρt(ρ) (6.31)
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which leads to the following:

ρ
d2t

dρ2
+ 2(l + 1− ρ)

dt

dρ
+ [ρ0 − 2(l + 1)] ρ = 0 (6.32)

We now see that we can use Frobenius method to find a solution in the form of a power

series in ρ:

t(ρ) =
∞∑
j=0

ajρ
j (6.33)

where our aim is to find the coefficients (a0, a1, . . .). This series can now be put back in

to (6.32) and using a dummy index j → j + 1 we can write all terms so that they are all

multiplied by the same power of j. This of course does induce additional terms, but in

this case the additional terms are removed due to zeros. So we are left with:

∞∑
j=0

j(j + 1)aj+1ρ
j + 2(l + 1)

∞∑
j=0

(j + 1)aj+1ρ
j−

2
∞∑
j=0

jajρ
j + [ρ0 − 2(l + 1)]

∞∑
j=0

ajρ
j = 0 (6.34)

We can now equate the lowest powers of ρj which leaves us with the following recursion

relation for aj:

aj+1 =

[
2(j + l + 1)− ρ0

(j + 1)(j + 2l + 2)

]
aj (6.35)

where we fix a0 by normalisation, which then allows us to determine all other coefficients.

Again we look at the asymptotic behaviour of the recursion relation and ensure that our

solution doesn’t blow up. For large j we see:

aj+1 '
2j

j(j + 1)
aj =

2

j + 1
aj (6.36)

The next trick is rather nice and allows us to find a function which fits our infinite series.

We simply suppose that the asymptotic recursion relation is correct, which implies:

aj =
2j

j!
a0 (6.37)

thus:

t(ρ) = a0

∞∑
j=0

2jρj

j!
(6.38)

= a0e
2ρ (6.39)
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which means

s(ρ) = a0ρ
l+1eρ (6.40)

But there is a problem with this, s(ρ) blows up for large ρ. In order to get rid of these

non-normalisable solutions our series must terminate after a finite number of steps, i.e

there is a jmax such that ajmax = 0. From (6.35) this implies 2(jmax + l + 1) − ρ0 = 0,

where we define our principle (orbital) quantum number to be:

n = jmax + l + 1 (6.41)

which means ρ0 = 2n. Since ρ0 by definition determines Eint, we find that

Eint = − mee
2

8π2ε02h2ρ02
(6.42)

and so the allowed energies are(dropping the subscript):

En = −E1

n2
(6.43)

which is Bohrs formula, where n ∈ N. We can also define the Bohr radius9 as follows:

a0 =
1

κ
=

4πε0h
2

mre2
(6.44)

Putting everything together we can formulate the radial part to find:

Rnl(r) =
1

r
ρl+1e−ρt(ρ) (6.45)

where t(ρ) can be written as an associated Laguerre polynomial t(ρ) = L2l+1
n−l−1(2ρ), which

has the following form:

Lpq−p(x) = (−1)p
(
d

dx

)p
Lq(x) (6.46)

where Lq(x) is the qth Laguerre polynomial, generated by:

Lq(x) = ex
(
d

dx

)q
(e−xxq) (6.47)

9The Bohr radius a0 is not to be confused with a0 in our series solution.
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Thus we can now construct our full wave equation. We combine (6.10), (6.45) and

(6.23)and normalise (6.45) so that our full wavefunction in terms of all quantum numbers

is defined as [Gri05]:

Ψnlm(R, r) =
e(iK·R)

√
V

√(
2

na0

)3
(n− l − 1)!

2n[(n+ 1)!]2
e−
(
|r|
na0

)(
2|r|
na0

)l [
L2l+1
n−l−1

(
2|r|
na0

)]
Ylm(θ, φ)

(6.48)

6.4 The hydrogen atom in the momentum representation

There are several reasons why the hydrogen atom is not discussed in the momentum space

representation at undergraduate level; firstly complexity and secondly the mathematical

tools required have usually not been developed. On the surface the problem seems quite

innocent, as we know that to change between the different representations all we have to do

is perform a Fourier transform. Unfortunately the three dimensional Fourier transform

is very challenging. Several methods for finding the wavefunction in the momentum

representation are described in detail by Fock [Foc35], Lévy [Lev50],Podolsky and Pauling

[PP29], and others [Ave86] [Lom80]. As the methods would require the introduction of

many new mathematical concepts, which for purely spacial reasons could not be contained

within this work, I will summarise the main concepts, leaving out the more technical

details and only quoting results. Since we only require the ground state radial equation for

our investigation, we shall only derive an expression for the radial solution in terms of the

orbital quantum number n, ignoring the angular part. Also, as the ground state Fourier

transform from the position to the momentum space is moderately straight forward, we

shall also include it, in section 7.
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6.5 The starting point

We begin by defining the Fourier transform between each space, in atomic units, 10 as:

Ψ(r) =
1

(2π)
3
2

∫
d3peir·pφ(p) (6.49)

φ(p) =

∫
d3re−ir·pΨ(r) (6.50)

where the wavefunction φ(p) satisfies the normalisation condition:∫
d3p|φ(p)|2 = 1 (6.51)

if Φ(r) is normalised to unity. We next proceed to write the Schödinger equation in the

form of an integral equation in momentum space:

(p2 − 2E)φ(p) = −2

∫
d3p′φ(p′)V ′(p− p′) (6.52)

where V ′(p) is the Fourier transform of V (r) multiplied by (2π)−
3
2 and we restrict our-

selves to potentials V (r) which are only dependent on the distance r, i.e. central poten-

tials. This implies that V ′(p) is a function of the absolute value of p only and is real.

It also means that (6.52) is separable in spherical polar co-ordinates and has solutions of

the form:

φ(p) = Fl(p)Ylm(θ, φ) (6.53)

where l and m retain the same definitions as previously discussed. This means that (6.52)

can be reduced to a one-dimensional integral equation for Fl(p) of form:

(p2 − 2E)Fl(p) = −λ
∫ ∞
0

dp′p′
2
Kl(p, p

′)Fl(p
′) (6.54)

where:

λKl(p, p
′) = 4π

∫ 1

−1
dxV ′

(√
p2 + p′2 − 2pp′x

)
Pl(x) (6.55)

The kernal Kl is symmetric in p and p′ and depends on the value of l and the shape of the

potential V (r). The strength of the potential is contained in λ ‘the potential strength’

parameter. We assume that the energy E is given and λ is the eigenvalue to be determined

and we define Pl(x) as the un-normalised Legendre function of the first kind.

10Atomic units for the momentum are in terms of the Bohr momentum p0 = ~
a0
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6.6 The Coulomb potential

For the Coulomb potential we may write, V (r) in the momentum space as:

V ′(p) = − 1

2π2p2
(6.56)

Substituting (6.56)in to (6.52) we find:

(p2 − 2E)φ(p) =
1

π2

∫
d3p′

φ(p′)

|p− p′|2
(6.57)

we note that (6.57) has partial wave solutions of the form (6.53) and Fl(p) satisfies (6.54).

Using the addition theorem of the spherical harmonics and the orthogonality properties

of the Legendre polynomials [WG89], we can evaluate the kernel Kl explicitly to give:

(p2 − 2E)Fl(p) =
2

pπ

∫ ∞
0

dp′p′Ql

(
p2 + p′2

2pp′

)
Fl(p

′) (6.58)

where Ql is a Legendre polynomial of the second kind and is related to the un-normalisable

Legendre function of the first kind, Pl, by:

Ql(z) =
1

2

∫ 1

−1
dt
Pl(t)

z − t
(6.59)

6.7 The radial equation in momentum space

Since E < 0 , (6.58) has solutions Fnl, for a discrete spectrum of energy eigenvalues En,

which is the same spectrum that we saw previously for n ∈ N. Fock was the first to

directly solve (6.58) [Foc35] for wavefunctions normalised such that:∫ ∞
0

dpp2|Fnl(p)|2 = 1 (6.60)

where p is expressed in atomic units. Since we will be treating the Bohr radius as a

parameter, it would be more appealing to have a radial equation in terms of physical

units. Thus, it is found that the solution is [PP29]:

Fnl(p) =

(
1

2
1
2

)
π(na0)

3
2 22l+4l!

(~)
3
2 (2π)

1
2

(
n(n− l − 1)!

(n+ l)!

) 1
2


(
na0p
~

)l((
(na0p)

~

)2
+ 1

)l+2

C l+1
n−l−1

((
na0p
~

)2 − 1(
na0p
~

)2
+ 1

)

(6.61)
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where Cq
p−q(x) is the Gregenbauer function11. We can write this is in a better form in

terms of the wavevector k = p, with ~ = 1 as:

Fnl(k) =

(
1

2
1
2

)
π(na0)

3
2 22l+4l!

(2π)
1
2

(
n(n− l − 1)!

(n+ l)!

) 1
2

(
(na0k)l(

(na0k)2 + 1
)l+2

)
C l+1
n−l−1

(
(na0k)2 − 1

(na0k)2 + 1

)
(6.62)

7 Interaction has its part to play

As we have now fully discussed the electron-proton system we are finally in a position to

move towards the more interesting aspects of this dissertation. This being the electron-

proton entanglement in the hydrogen atom, which is caused by the electrostatic interaction

between the electron and proton. To my knowledge, the idea of electron-proton entan-

glement was first discussed by Tommasini, Timmermans and Toledo Piza. They came to

the conclusion that by finding the reduced state of the electron system, which is found

by integrating over the proton position basis eigenfunctions, and then transforming this

state in to the momentum representation, that they were able to show how the standard

deviation of the momentum distribution becomes a measure of correlation (entanglement)

between the electron and proton. They found [TTdTP98] that the stronger the correla-

tion between the electron and proton, the greater the value of the Bohr radius a0, where

a0 is directly linked to the interaction. In this section however, we shall see that by using

established measures for quantifying entanglement, the opposite conclusion is reached,

that being as a0 increases the amount of correlation between the electron and proton

decreases. To some degree, it seems very strange to vary a fixed parameter, but in view-

ing parameters that are related to the strength of interaction as having some effect on

entanglement, leads to some interesting results and questions.

11For a summary of Gegenbauer functions, visit Mathworld.
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7.1 The entanglement within the electron-proton system

This is an important point, because in looking at equation (6.48) we know that it is

separable and so can be decomposed in to the product of other states i.e. our separable

solutions. But in order to do this we had to perform a mathematical trick, we changed

our physical co-ordinates to some fictitious co-ordinates based on the centre of mass and

the relative distance between the electron and proton,which did not actually describe the

physical system. If we write (6.48) more succinctly in terms of the fictitious co-ordinates

we have:

Ψnlm(R, r) = φ(r)
e(i

P
~ ·R)
√
V

(7.1)

We next insert our original definitions for the relative (6.2) and centre of mass (6.3)

co-ordinates in to (7.1), from which we see the following:

Ψnlm(re, rp) = φ(re − rp)
e

(
iP~ ·

[mere+mprp]

M

)
√
V

(7.2)

which means that our relative wavefunction is no longer separable due to its dependence

on the electron and proton co-ordinates, as we have exponential terms and linear terms in

the relative part which are dependent on |re − rp|, which is of course not separable. This

means that it no longer has a solution that can be written in terms of separable functions

and so by the definitions discussed in chapter two, is entangled.

7.2 The momentum wavefunction

In quantum mechanics, when we deal with an observable we need to find its spectral

data, i.e. the eigenvalues and eigenvectors of the linear operator that represents it. This

is because it is the spectrum that gives us a wealth of information, regarding the possible

outcomes of the system and the associated probabilities of those outcomes. For this

system, things are no different and it is found that the eigenvalues are the partial states

of the electron system in momentum space, with eigenvectors that are plane waves. But

why is this so? Well, the state that we are dealing with is a pure state, which means

its spectrum simply consists of the eigenvalues 0 and 1. But this is quite problematic,
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especially if we would like to calculate the Von-Neumann entanglement entropy (5.1),

as the eigenvalues of a pure state would imply a Von-Neumann entanglement entropy of

zero. This means that we gather no understanding or information about how entangled

our state is, despite the fact that (7.2) is mathematically entangled. It is for this reason

that we look at the partial states of a pure system, as they are mixed states, and mixed

states have a varying spectrum.

With this in mind let us now show why the eigenvalues are represented by partial states in

the momentum representation. We begin by using a homogenous state ρ(r−r′) = ρ(r, r′),

which means that the state remains unchanged via translations. Next we define the

following Fourier transform:

ρ(r − r′) =
1

(2π)3

∫
d3kρ̃(k)e(ik·[r−r

′]) (7.3)

where k is the wave vector. The Fourier transform plays a dual role, it is proportional to

the momentum distribution of the system and provides us with the spectral data of the

density matrix [TTdTP98]. For the first assertion we evaluate the momentum expectation

value 〈p̂〉 for a pure system, with respect to the quantum state |ψ〉:

〈p̂〉 = 〈ψ|p̂|ψ〉

we first use the completeness relation over the position basis:

=

∫
d3r

∫
d3r

′ 〈ψ|r〉
〈
r
∣∣∣p̂∣∣∣r′〉〈r′∣∣∣ψ〉

=

∫
d3r

∫
d3r

′
〈
r
∣∣∣p̂∣∣∣r′〉 ρ(r, r

′
)

we then use the following relation
〈
r
∣∣p̂∣∣r′〉 = −δ(r − r′)i~∇r, which comes from using

the completeness relation over the momentum basis states to write:

〈p̂〉 = −i~
∫
d3r

∫
d3r

′
δ(r − r′)∇rρ(r, r

′
)

using (7.3) we find:

=
1

(2π)3

∫
d3r

∫
d3r′δ(r − r′)

∫
d3k~kρ̃(k)e(ik[r−r

′])

=
V

(2π)3

∫
d3k~kρ̃(k) (7.4)
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where the momentum is equal to p = ~k, which means ρ̃(k) is a function of momentum

f(p), thus we acquire the first moment and a way to construct higher order moments.

Thus the Fourier transform is proportional to the momentum distribution of the system.

The volume V has been introduced as a large quantisation volume to avoid problems

related to states of an infinite norm, also known as density of states or box normalisation.

The fact that this acts as a distribution function means that we can define the standard

deviation of the momentum distribution as follows:

4p =
√〈
p̂2
〉
− 〈p̂〉2 (7.5)

In the paper [TTdTP98] they work in the centre of mass frame which means 〈p̂〉2 = 0

and so we can use (7.4) and (7.5) to find that:

4p =

√∫
d3pp2f(p) (7.6)

In [TTdTP98] it is calculated that 4p = ~
a0

.

We next see how the Fourier transform provides us with the spectral data. We begin with

the following: ∫
d3r′ρ(r − r′)e

(ik·r′)
√
V

=

then using (7.3) we write:

=
1

(2π)3

∫
d3k′ρ̃(k′)

e(ik
′·r)
√
V

∫
d3r′e(i[k−k

′]·r′)

= ρ̃(k)
eik·r√
V

(7.7)

which is precisely the eigenvalue equation seen in chapter one, although structurally it

looks a little different. This is because for a given reduced density matrix we may write

the eigenvalue equation as follows:

∑
k

ρeikUkl = λlUil (7.8)

This is because for a bipartite state the reduced density matrices have the same eigenval-

ues, but different eigenkets (see Schmidt decomposition chapter two). The superscript e
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represents which partial state we are dealing with and the unitary matrix Ukl enables us

to diagonalise ρe, which is in the basis |rei〉 .

There are two things to notice when comparing (7.7) and (7.8). First, one is continuous

and the other is discrete, we will address this issue later. Second, a pure state has

eigenvalues ρ̃(ki) = 1 for j = i and ρ̃(kj) = 0 for all j 6= i , which implies the eigenstates

are 〈r|Ψ〉 = e(iki·r)√
V

. But, this represents a particle with definite momentum, i.e zero

standard deviation. This adds to the reason for requiring a mixed state, as a mixed state

has a varied spectrum ρ̃(kj), thus a non-zero standard deviation. It is for this reason

that Tommasini, Timmermans and Toledo Piza [TTdTP98] assume that the standard

deviation may be interpreted as a measure of correlation. This of course ultimately leads

to them, and now us, viewing the Bohr radius a0 as a correlation parameter.

Returning back to the first point, in order convert between continuous and discrete spaces

we will require the idea of density of states, to ensure the the trace of the density matrix

remains set to unity. We can summarise this idea as follows:

1 =

∫
d3rρ(0) = ρ(0)V =

V

(2π)3

∫
d3kρ̃(k)→

∑
k

ρ̃(k) (7.9)

and so in using any trace formulas in the continuous spectrum we will have to integrate

over the whole spectrum and we shall acquire a factor of
(
L
2π

)d
which is dependent on the

dimension, d, of the system.

7.3 Quantifying the entanglement in the hydrogen atom

Now that the background and understanding have been put in place, we may now pro-

ceed to use the ground state wavefunction in the momentum representation, to calculate

first the density state of the whole system and second, the partial state for the electron

subsystem. Once this is completed, we can then quantify the entanglement in the system

as a function of the Bohr radius, using our chosen entanglement measures.
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In the position representation the density state for the hydrogen atom is given as:

ρ(r, r′) = |Ψnlm〉〈Ψnlm| = Ψnlm(re, rp)Ψ
∗
nlm(r′e, rp) (7.10)

and so we can extract our partial state, by integrating over the proton basis set of co-

ordinate eigenfunctions:

ρ(re, r
′
e) =

∫
d3rpΨnlm(re, rp)Ψ

∗
nlm(r′e, rp)

=
e(−

imeP
~M ·[re−r′e])

V

∫
d3rpφe(re − rp)φ∗e(r′e − rp)

=
e(−

imeP
~M ·[re−r′e])

V
ρe(re, r

′
e) (7.11)

where ρe simply represents the electron density matrix for electrons in atoms at rest, i.e.

P = 0 and so ρ(re, r
′
e) = ρe(re, r

′
e). Thus we can now calculate the electron density state

in the electron co-ordinate basis by setting n = 1 and l = m = 0 in (7.11) to get the

ground state wavefunction. But, as we discussed earlier we require the density state in

the momentum representation. In order to do this we must Fourier transform (7.10) in

to the momentum space:

V ρe(re, r
′
e) =

∫
d3rp

1

(2π)6

∫
d3kφe(k)eik·[re−rp]

∫
d3k′φ∗e(k

′)e−ik
′·[r′e−rp]

=
1

(2π)3

∫
d3k

∫
d3k′φe(k)φ∗e(k

′)eik·re−ik
′r′e

1

(2π)3

∫
d3rpe

irp·(k′−k)

since the last integral is simply the Fourier transform of the dirac delta function, we have:

=
1

(2π)3

∫
d3k

∫
d3k′φe(k)φe(k

′)eik·re−ik·r
′
eδ(k′ − k)

=
1

(2π)3

∫
d3k|φe(k)|2eik·[re−r′e]

therefore:

ρ̃e(k) =
|φe(k)|2

V
(7.12)

which means we require the wavefunction in the momentum representation. This we find

by using (6.62):

F10(k) =
24

2

π√
π

(a0)
3
2

1

((a0k)2 + 1)2
1

=
(22a0π

1
3 )

3
2

((a0k)2 + 1)2
(7.13)
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As we said we would do, we shall also calculate this expression via a direct Fourier

transform of the ground state. To do this we first choose to Fourier transform the following

momentum space wavefunction φ(p) = 1√
π
e−p which can be performed by using (6.49) 12.

We can then relate this to a general position wavefunction as follows:

(2π)
3
2 Φ(r) =

8π

(1 + r2)2
(7.14)

which we can then use to compare to the ground state position wavefunction:

φe(k) =

∫
d3rφ100e(r)e−ik·r

=

∫
d3r

1√
π

(
1

(a0)
3
2

)
e
|r|
a0 e−ik·r (7.15)

making the following substitution r
a0

= R allows us to write:

=
(a0)

3
2

√
π

∫
d3Re−Re−ia0k·R

=
(a0)

3
2

√
π

8π

((a0k)2 + 1)2
(7.16)

which is precisely (7.13). Now that we have the ground state in the momentum space

representation, we can calculate the electron density state by using (7.12):

ρ̃e(k) =
(a0)

364π

((a0k)2 + 1)4
1

V
(7.17)

Thus, we are finally in a position to calculate our first entanglement measure, the Von-

Neumann entanglement entropy. However, before we calculate it we must tread carefully,

as we refer back to the point that the spectrum in our case is continuous. So, when we

calculate the Von-Neumann entanglement entropy, which will have to be transformed in

to the continuous spectrum, we must ensure that we apply the density of states procedure

by using (7.9). Recalling that the Von-Neumann entanglement entropy is given by:

Se =
∑
k

ρ̃e(k) ln(ρ̃e(k))

12See appendix C for more details
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and so in applying the density of states procedure
∑

k →
V

(2π)3

∫
d3k transforms the

measure to:

= − V

(2π)3

∫
d3kρ̃e(k) ln(ρ(k)) (7.18)

Thus, we can now calculate the entanglement entropy:

= − 1

(2π)3

∫ ∞
−∞

d3k
64πa0

3

(1 + a02k2)4
ln

(
64πa0

3

V (1 + a02k2)4

)
we can convert this integral in to spherical co-ordiantes to give:

= − 1

(2π)3

∫ ∞
0

dk
k2256π2a0

3

(1 + a02k2)4
ln

(
64πa0

3

V (1 + a02k2)4

)
(7.19)

To make our lives simpler we notice that if we group the following terms in the logarithm

such that ln
(

64πa30
V

1
1+(a02k2)4

)
then we can actually apply the logarithm rule ln(AB) =

ln(A)+ln(B), as the dimensions in each part are dimensionless, i.e for A =
64πa30
V
→ [A] =

L3L−3 = [ ], which is also true for B as [k] = L−1. Thus we have the following integrals

to solve:

I1 = − 1

(2π)3

∫ ∞
0

dk
k2256π2a0

3

(1 + a02k2)4
ln

(
64πa0

3

V

)
(7.20)

I2 =
1

(2π)3

∫ ∞
0

dk
k2256π2a0

3

(1 + a02k2)4
4 ln
(
1 + a0

2k2
)

(7.21)

We begin by first tackling I1, for which we see that we must solve an integral of the form:

IQ =

[
k

(1 + a20k
2)2

]2
a30

We can evaluate this integral through several different substitutions. Our first substitution

is chosen to be u = a0k , which gets rid of a0 in IQ. Since we have a term 1 + u2 we try a

hyperbolic function and so let sinh(x) = u. The limits remain the same and our integral

reduces to the following:

IQ =

∫
dx tanh2(x) sech5(x) (7.22)

we next use the substitution y = tanh(x) together with the relation sech2(x) = 1 −

tanh2(x), this time the integration limits do change ∞ → 113 and 0 remains 0, thus we

13Technically we mean limx→∞ tanh(x) = 1.
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can write:

IQ =

∫ 1

0

dyy2(1− y2)
3
2 (7.23)

which has the solution:

=

[
1

48
(y
√

(1− y2)(−3 + 14y2 − 8y4) + 3 arcsin(y))

]1
0

(7.24)

IQ =
π

32
(7.25)

which means after cancellations that I1 is equal to:

I1 = − ln

(
64πa0

3

V

)
= ln

(
V

64πa03

)
(7.26)

as all factors cancel. Moving now to I2 we want to solve an integral of the form:

IU =

[
k

(1 + a20k
2)2

]2
a30 ln

(
1 + a20k

2
)

(7.27)

using similar substitutions to our first integral we find:

IU =
1

192
π(−5 + ln

(
212
)
) (7.28)

therefore after cancellations:

I2 = ln
(
28
)
− 10

3
(7.29)

and so the Von-Neumann entanglement entropy is found to be:

Se = ln

(
16V

3V0

)
− 10

3
(7.30)

where V0 =
4πa30
3

is the volume dependent on the size of the Bohr radius.

Now that we have a complete expression for the Von-Neumann entanglement entropy,

which is dependent on the Bohr radius a0 and some finite volume V , we can plot it as a

function of a0, see fig. 2. Although, it does seem rather strange to treat the Bohr radius
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Figure 2: A plot of the entanglement entropy of the electron-proton system as a function

of the Bohr radius a0. As the volume V is arbitrary, we have set it to unity.

as some kind of entanglement parameter, it does show something very interesting. First

we see that the electron and proton are most entangled at the most probable distance

between them in the ground state, i.e. a0 = 0.0529 ∗ 10−9, which we should expect. But

as the distance between the two increases, we see that the entanglement between them

becomes weaker. This is because as the distance increases between the electron and pro-

ton, the electrostatic forces decrease in magnitude. This implies that in this particular

case of entanglement, that the interaction between the electron and proton is the driving

force for the creation of entanglement.

We shall now calculate our second chosen measure of entanglement, the linear entropy

(5.3). As discussed previously the linear entropy is closely related to the Von-Neumann

entanglement entropy, in terms of our reduced state we write:

SLe = 1− Tr(ρ2e)

As before we convert the system from a discrete spectrum to a continuous using the
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Figure 3: A plot of the linear entropy of the electron-proton system as a function of a0.

Since the volume is arbitrary again, it is chosen to be unit.

density of states:

= 1− V

(2π)3

∫ ∞
−∞

d3k
(64πa0

3)2

V 2(1 + a02k2)8

Converting to spherical co-ordinates:

= 1− 1

(2π)3

∫ ∞
0

dk
k24π(64πa0

3)2

V (1 + a02k2)8

using very similar substitutions to the integrals we evaluated for the Von-Neumann en-

tanglement entropy we find:

SLe = 1− 33

8

(a0)
3

V
(7.31)

Having an expression for the linear entropy allows us to plot it as a function of a0 fig.

3. Although the starting and end points of the linear entropy plot (fig. 3) are almost exact

to the Von-Neumann entanglement entropy plot (fig. 2), the curvature of the graphs is

very different and this means some caution is needed in its interpretation. If the linear

entropy were to be taken as our only entanglement measure, it would tell us that the

electron-proton system not only remains highly entangled for smaller distances of a0, but
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it remains entangled for a larger range of a0. Where as we see for the Von-Neumann

entanglement entropy fig. 2, that the strength of entanglement decays much quicker. It is

interesting to see how two entanglement measures can give quite different answers about

how correlated the electron and proton are. It would be nice if there were many other

entanglement measures that we could compare it to, but for this type of pure bipartite

system we are limited. So what can we definitely say about entanglement in this system?

Well, both measures agree that the state is indeed entangled and both also agree that

the electron and proton are most strongly correlated at the well known value of the Bohr

radius in the ground state a0 = 0.0529 × 10−9. Although the curves are different, both

measures still decrease as the strength of the interaction also decreases and so we see a

direct link between interaction and entanglement.

8 A system of two coupled quantum particles

We now progress onwards to a different physical system, a toy model of two coupled

bosinic particles, whose interaction is determined by a quadratic potential, with coupling

constant (our entanglement parameter) κ. This system is essentially that of two coupled

harmonic oscillators in one-dimension. We shall see that this system again has a Hamilto-

nian, that although originally correlated, can be written in the form of two uncorrelated

Hamiltonians after some fictitious co-ordinate transform. We see that our uncorrelated

internal Hamiltonian is precisely the Hamiltonian governing the one dimensional quantum

harmonic oscillator and so can be solved accordingly. The Hamiltonian at the centre of

mass will have the same plane wave solution as before, with the box normalisation scheme

and is one-dimensional. We then carry out the same analysis as that of the electron-proton

system, except this time we have a different coupling in the wavefunction and a different

entanglement parameter κ.
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8.1 The coupled quantum particles

For this system we introduce an entanglement parameter κ, which is typically a measure of

the coupling between two particles A and B. In using this parameter we shall proceed with

a similar analysis to that of the electron-proton system, by calculating the reduced density

matrix of one system in the momentum representation and investigate what happens to

our entanglement measures as κ is varied .

To begin we require our equations of motion, which are contained within our Hamiltonian

operator. Once we have written down our Hamiltonian operator we can then proceed to

use Schrödinger’s equation to calculate the wavefunction for this system. We begin by

assuming we have two quantum particles A and B, which are connected by a quantum

coupling (see fig.4), where the strength of the coupling is given by κ. The Hamiltonian will

be very similar to the hydrogen atom, except this time we will have a different potential

to describe a different interaction. Therefore we write:

Ĥ =
p̂2a

2ma

+
p̂2b

2mb

+
1

2
mxκ

2(xa − xb)2 (8.1)

we should also have the additional term k
2
(x2a + x2b), but we have set k = 0. We can

then use the methods presented in the electron-proton system to write the Hamiltonian

in terms of the the internal Hamiltonian, which is dependent on the relative co-ordinate

and governs the interaction and the Hamiltonian at the centre of mass:

Ĥ =
p̂2R
2M

+
p̂2r

2mx

+
1

2
mxκ

2r2 (8.2)

where r = xa − xb is the relative distance between our quantum particles, κ is our entan-

glement parameter, R represents the centre of mass co-ordinate, with respect to particle

A of mass ma and particle B of mass mb. We also introduce the quantity mx, which is

analogues to the reduced mass mr, except e → a, p → b and we set ma = mb. Carrying

out a similar analysis to before, we know that this Hamiltonian has separable solutions

of the form:

Φ(R, r) = χ(R)ψ(r) (8.3)
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Figure 4: An artists impression of two coupled quantum particles[Sim11].

As we already know that the centre of mass Hamiltonian will just have plane wave solu-

tions, we can go straight to finding the relative wavefunction ψ(r), which is given by:

1

2mx

[
p̂2r + κ2m2

xr
2

]
ψ(r) = Eψ(r) (8.4)

This of course is precisely the equation for a one dimensional quantum harmonic oscilla-

tor, which can be solved directly using ladder operators, a treatment first introduced by

Dirac. We first introduce two operators, one to destroy and one to create, we define these

operators as:

â =

√
1

2~mxκ
(mxκr̂ + ip̂) (8.5)

â† =

√
1

2~mxκ
(mxκr̂ − ip̂) (8.6)

where † represents the self-adjoint (our creation operator). We then notice the following

relations:

â†â =
1

2~mxκ

[
(mxκr̂)

2 − imxκ[r̂, p̂] + p̂2
]

=
Ĥ

~κ
− 1

2
(8.7)

(8.8)

likewise the product ââ† is equal to:

ââ† =
Ĥ

~κ
+

1

2
(8.9)
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combining both expressions together we see the following:[
â, â†

]
= 1 (8.10)

We next introduce an hermitian operator, the number operator N̂ = â†â, which acts on

a eigenket |n〉 to produce a real eigenvalue n, that represents an observable. The number

operator allows us to write the Hamiltonian Ĥ in the following way:

Ĥ = ~κ(N̂ +
1

2
) (8.11)

Therefore, upon applying the Hamiltonian operator to the number ket we find an expres-

sion for the discrete energy levels:

Ĥ |n〉 = E |n〉 = ~κ(n+
1

2
) |n〉 (8.12)

which implies E = ~κ(n+ 1
2
) and so the ground state |0〉 has energy E0 = ~κ

2
i.e. everything

is always moving. But what exactly is the ground state wavefunction for the quantum

harmonic oscillator? It is identified as finding the state for which â |0〉 = 0. We can

express this in the co-ordinate basis as follows:

〈r′|â|r〉 = δ(r − r′) 1√
2~mxκ

(
mxκr

′ + ~
∂

∂r′

)
where the ground state is defined as 〈r|0〉 = ψ0(r), and we can use the completeness

relation
∫
dr |r〉〈r| = I to see the following:

〈r|â|0〉 = 0 =

∫
dr 〈r|â|r′〉 〈r′|0〉 =

(
mxκr + ~

∂

∂r

)
ψ0(r)

which means we have to solve a simple separable first order differential equation:(
mxκr + ~

∂

∂r

)
ψ0(r) = 0 (8.13)

solving this we find that our ground state is:

ψ0(r) = 〈r|0〉 = Ce(−r
2mxκ

2~ ) (8.14)

In order to ensure that our ground state is normalised we enforce the condition :∫ ∞
−∞

drψ∗0(r)ψ0(r
′) = δ(r − r′) (8.15)
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which after a simple calculation of a Gaussian integral gives us the following normalisation

constant:

C =
(mxκ

~π

) 1
4

thus the ground state wavefunction is:

ψ0(r) = 〈r|0〉 =
(mxκ

~π

) 1
4
e(−r

2mxκ
2~ ) (8.16)

The nice property of Dirac’s method, is that in order to generate higher states, we simply

act on the ground state with the creation operator â†. From this we find the normalised

excited state wavefunctions are as follows :

ψn(r) = 〈r|n〉 =

√
1

2nn!

(mxκ

π~

) 1
4
e

(
−mxκr

2

2~

)
Hn

(mxκ

~
r
)

(8.17)

where the functions Hn(x) are the Hermite polynomials defined as:

Hn(x) = (−1)nex
2 dn

dx
(e−x

2

) (8.18)

and any number ket |n〉, may be generated from the ground state as follows:

|n〉 =
(â†)n√
n!
|0〉 (8.19)

Thus our complete wavefunction for the one dimensional harmonic oscillator is:

Φ(R, r) =
1√
L
e(i

P
~ R)
√

1

2nn!

(mxκ

π~

) 1
4
e
−
(
mxκr

2

2~

)
Hn

(mxκ

~
r
)

(8.20)

where k = p
~ . If we insert our original definitions for r and R back in to (8.20) then we

find that we have a non-separable entangled state of the form:

Φ(xa, xb) =
1√
L
e

(
iK

(maxa+mbxb)
ma+mb

)
ψ(xa − xb) (8.21)

This is due to the fact that in the exponential we have the term (xa−xb)2 = x2a+x
2
b−2xaxb,

where the last term of the expansion is of course not separable in the exponential, thus

creating our entangled state. In the case of the hydrogen atom we had the modulus

r = |re − rp|, which of course is not separable either in the exponential. Of course

this is very interesting from a mathematical perspective as there are quite a few systems

with potentials of this form, when solved via the Schrödigner equation, give rise to this

behaviour in the exponential term. Although whether or not this is truly entanglement

or just clever mathematical manipulation, is of course debatable.
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8.2 Quantifying the entanglement for the quadratic potential

Since most of the ideas have already been established in the previous example, we can

easily move from step to step, quickly calculating the quantities that we require. In order

to quantify entanglement in this system, we must first proceed with step one, finding

the spectrum i.e. the partial state of system A in momentum space. We can do this

by either finding the ground state wavefunction in the momentum space and continuing

accordingly, or we can calculate the reduced density matrix for system A in the position

space and then Fourier transform in to the momentum space using (6.50). Once we have

the partial state for system A in the momentum representation we can then evaluate our

entanglement measures.

Taking the latter approach we can write the partial state of system A in the position

representation by integrating over system B′s basis set of coordinate eigenfunctions1415:

ρ(xa, x
′

a) =
1

L

∫
dxbψ0(xa − xb)ψ∗0(x

′

a − xb)

=
1

L

∫
dxb

(
2κ̃

~π

) 1
2

e

(
−[(xa−xb)2−(x

′
a−xb)2]( κ̃~ )

)

let y = x
′
a − xb , which means the limits would be from ∞ to −∞ and so to flip this we

induce another minus sign, which cancels the minus sign we get from the Jacobi factor:

ρ(xa, x
′

a) =
1

L

(
2κ̃

~π

) 1
2

e
−
(
(xa−x

′
a)

2 κ̃
~

) ∫
dye

(
−(2y2+2y(xa−x

′
a))

κ̃
~

)

in completing the square and making the substitution ỹ =
√

2 κ̃~ (y+ (xa−x
′
a)

2
) we can make

the integral of Gaussian form to find that the reduced state is:

ρA(xa, x
′

a) =
1

L
e
−
(
(xa−x

′
a)

2 κ̃
2~

)
(8.22)

We next Fourier transform our reduced state for system A in to the momentum space,

which we do by first defining the co-ordinate ra = xa − x
′
a:

ρ̃A(k) =
1

L

∫
drae

−ikrae
−
(
r2aκ̃

2~

)
(8.23)

14We set κ̃ = 1
2mxκ.

15The centre of mass momentum has been set to P = ~K = 0.
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scaling ra with r̃a =
√

κ̃
2~ra leaves us with:

=
1

L

√
2~
κ̃

∫
dr̃ae

−
(
r̃2a+i
√

2~
κ̃
r̃2ak

)

completing the square and making the substitution y =
(
r̃a + i

2

√
2~
κ̃
k
)

converts the inte-

gral in to Gaussian form:

ρ̃A(k) =
1

L

√
2~
κ̃
e−k

2( 2~
4κ̃)
∫ ∞
−∞

dye−y
2

and so the partial state for system A in the momentum space is:

ρ̃A(k) =
1

L

√
2π~
κ̃
e−k

2( ~
2κ̃) (8.24)

Now that we have the partial state of system A we can calculate the first of our

entanglement measures, the Von-Neumann entanglement entropy. Setting ~ = 1 and

remembering to include a factor of
(
L
2π

)
due to the density of states, we write:

SA = −
(
L

2π

)∫ ∞
−∞

dk
1

L

(
2π

κ̃

) 1
2

e−k
2( 1

2κ̃) ln

((
2π

L2κ̃

) 1
2

e−k
2( 1

2κ̃)

)
(8.25)

we next write the logarithm in the following way 1
2

ln
(

2π
L2κ̃

)
− k2

(
1
2κ̃

)
. We can only do

this as the dimensions in each part are dimensionless, for example the dimensions in the

first part, remembering that ~ = 1, are [ ] =
[ML2T−1]
[L2MT−1]

and likewise for the second part.

Therefore we have two separate integrals:

I1 = −
∫ ∞
−∞

dk
1

4π

(
2π

κ̃

) 1
2

e−k
2( 1

2κ̃) ln

(
2π

L2κ̃

)
(8.26)

I2 =
1

2π

∫ ∞
−∞

dk

(
2π

κ̃

) 1
2
(

1

2k̃

)
k2ek

2( 1
2κ̃) (8.27)

Again both integrals can easily be solved by converting them to Gaussian form. Making

the substitution k̃ = k
(

1
2κ̃

) 1
2 in I1 gives us:

I1 =
1

4π
(2κ̃)

1
2

(
2π

κ̃

) 1
2

ln

(
2π

L2κ̃

)∫ ∞
−∞

dk̃e−k̃
2

= −1

2
ln

(
2π

L2κ̃

)
(8.28)

and making the exact same substitution in I2 gives us:

I2 = (2k̃)
1
2

(
1

2π

)(
2π

κ̃

) 1
2
∫ ∞
−∞

dk̃k̃2e−k̃
2

=
1

2
(8.29)
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Figure 5: A plot of the Von-Neumann entanglement entropy as a function of κ for the

quadratic potential, with L = 1 and mx = 2.

Thus combining our answers for I1 and I2 we find the Von-Neumann entanglement entropy

to be:16

SA =
1

2

[
1− ln

(
2π

L2κ̃

)]
(8.30)

We set L to unity and mx = 2. This allows us to plot the Von-Neumann entanglement

entropy as a function of κ fig.5. It is quite interesting to see in fig. 5 that due to a

different interaction, the way in which our coupled quantum particles entangle is very

different to the electron-proton system. We see that for small values of our entanglement

parameter κ that our state is not very entangled, however, as κ is increased the degree of

entanglement within the system also increases. The problem however is that this system

is not bound, the Von-Neumann entanglement entropy will continue to increase and it

doesn’t really make sense to have a Von-Neumann entanglement entropy greater than

one. As if it is greater than one, it would imply a state that is more maximally entangled

than the maximally entangled state. So it may mean one of two things, either our model

is incorrect or we have overlooked something. However, the Von-Neumann entanglement

16The logarithm is indeed dimensionless remember that ~ = 1 .
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Figure 6: A plot of the linear entropy for large κ, with L = 1 and mx = 2

entropy is directly related to the Shannon-Boltzmann equation through the thermody-

namic limit and in breaking down the Von-Neumann entanglement entropy, we may see it

as a measure of entropy of our system i.e it is telling us the uncertainty contained within

our system and so from that perspective the Von-Neumann entropy can be much greater

than one. Of course we can address this problem by fixing the values of κ, to ensure

that we get entanglement entropies between zero and one, which relate to what we expect

theoretically.

In light of our previous calculations, let us now calculate the linear entropy. Recalling

that the linear entropy is defined as SLA = 1− Tr(ρ2A) and using (8.24) we can write:

SLA = 1− L

2π

∫ ∞
−∞

1

L2

(
2π

κ̃

)
e(−k

2 1
κ̃) (8.31)

using the scaling k̃ = k
κ̃

we find:

= 1− 1

L

(
1

κ̃

) 1
2
∫ ∞
−∞

e−k̃
2

dk̃

SLA = 1− 1

L

(π
κ̃

) 1
2

(8.32)

Now that we have an explicit formula for the linear entropy we may now plot it as a
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Figure 7: A plot of the linear entropy for small κ, with L = 1 and mx = 2

function of our entanglement parameter κ, where L = 1 and mx = 2. This time however,

we shall do two plots, one for large κ (fig. 6) and one for small κ (fig. 7).

When κ is large we see how the linear entropy approaches a maximally entangled

state (fig. 6), in fact it it shall only have a linear entropy of one in the limit as κ tends

to infinity. We equally see that even when κ is small fig. 7, the particles are strongly

correlated, which is similar to the behaviour seen in fig. 5. Additionally, unlike the case

of the electron-proton system, both the entanglement measures have very similar curves.

We can of course set bounds on the value of κ, as we did for a0 to plot our entanglement

measures, so that the Von-Neumann entanglement entropy does not exceed one. So we

could argue, in essence, the following, that if κ > κbound then it is not a physical solution.

But then this it self creates another question, why should we put a bound on κ when the

linear entropy requires a very large κ to become maximally entangled? From a purely

physical perspective it would not make sense to have an infinitely strong coupling constant,

and so it is right that we should have some κbound, which we state is the value for which

the Von-Neumann entanglement entropy is equal to one, i.e. κbound = 2πe
1
2

L2 where L can

be chosen accordingly.
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Conclusion

As we come to a close, let us collect our results and reflect on what we have found

from our two models, regarding the creation of entanglement via interaction. In both

the electron-proton system and our toy model of two interacting coupled particles, we

see that the original Hamiltonian could not be solved via separation of variables, as it

was correlated due to the interaction term. However, in switching to a set of fictitious

co-ordinates, which are purely a mathematical transform and do not describe the actual

physical system, we found that the Hamiltonian splits in to two uncorrelated parts; one

describing the internal motion, the other the centre of mass. We find the wavefunction

and it seems to be uncorrelated. This is of course true for any system of two interacting

particles, for which we have a central potential, i.e. a potential which is solely dependent

on radial positions and so is spherically symmetric. However, in actually changing back

to the original co-ordinate system, which is dependent on the physical system, we find

that we now have an entangled wavefunction. This means that for all systems where we

have two quantum particles, whose interaction is mediated by a potential of this form,

will have an ‘entangled’ wavefunction. The essential point here is that entanglement is

not an absolute property of quantum states. Entanglement is a property of a quantum

state relative to a given set of subsystems.

In comparison of the two systems and the entanglement measures we used on each system,

we very clearly see that the plots of the measures are heavily dependent on the shape of

the potential. For the hydrogen atom we see this decaying behaviour, especially so for

the Von-Neumann entanglement entropy, although it is less so for the linear entropy.

For our toy model of two coupled quantum particles, the effect of interaction on the

correlations in this system is very different to that of the hydrogen atom. We see that the

entanglement in the system increases as the coupling strength κ is increased, whereas we

have an inversion of this for the hydrogen atom. Both the Von-Neumann entanglement

entropy and the linear entropy for this system showed how interaction was the driving force

behind the strength of the correlations between our quantum particles A and B. However,
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one cravat we faced was the that the Von-Neumann entanglement entropy would become

much greater than one, for larger values of κ, whereas the linear entropy would become

maximally entangled and so we have two different polarisations, something that is within

physical bounds and something that is not. In order to rectify this problem we introduced

a κbound for which the Von-Neumann entanglement entropy is a less than or equal to one

and we state that all κ > κbound are nonphysical values for our parameter.

This dissertation has aimed to provide an insight in to the creation of entanglement by

interaction and some of the fundamental concepts behind what it means for something

to be entangled. It should also be noted that we do necessarily even need any form of

interaction to entangle two systems [PBWZ98]. For future work and further directions

looking in to thermal entanglement via a common heat bath would be a natural extension

from the coupled quantum particles example as there are similarities in the formulation

of the two. Another direction is to try and extend these ideas to many body systems,

but we fear that this may be too challenging for merely a year long project, due to

the shear complexity of decrypting multipartite entanglement. For our final words, we

leave the reader with the following statement; if mathematically it depends on the frame

in which we are placed whether or not a state is entangled, can we say the same for

the experimentalist, does the entanglement that they observe, depend upon where the

‘eyes’(the measurement device) of our observer is looking?
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A Appendix A

A.1 The humble commutator

The commutator plays an important role in quantum mechanics, as it is a way of deter-

mining whether or not two observables can be simultaneously measured, which of course

is something that we do not have to worry about classically. We say that if two operators

Â and B̂ commute, that is
[
Â, B̂

]
= 0, then the observables corresponding to Â and

B̂ are simultaneously measurable, which means the operators have a common basis of

simultaneous eigenstates[Oss13].

The structure of the commutator that we would like in quantum mechanics is directly re-

lated to a Lie algebra, that is we would like our operators to obey the following properties

given operators Â,B̂ and Ĉ and α ∈ C:

Bi-linear:
[
Â+ αĈ, B̂

]
=

[
Â, B̂

]
+ α

[
Ĉ, B̂

]
Anti-symmetric:

[
Â, B̂

]
= −

[
B̂, Â

]
Jacobi-Identity:

[
Â,
[
B̂, Ĉ

]]
+
[
B̂,
[
Ĉ, Â

]][
Ĉ,
[
Â, B̂

]]
= 0
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B Appendix B

B.1 Legendre polynomials

A Legendre function simply put, is a function which satisfy Legendre’s equation of order

n:

(1− x2)y′′ = 2xy′ + n(n+ 1)y = 0 (B.1)

For applications n is usually an integer, however, if n is a non integer we must be a little

careful. We first note that (B.1) is invariant under the transformation x → −x. Thus

if Pn(x) is a solution to (B.1) so is Pn(x). However, for non-integer n, Pn(−x) is not a

multiple of Pn(x) and so they are linearly independent. Thus the general solution to (B.1)

is:

y(x) = APn(x) +BPn(−x) (B.2)

where A and B are arbitrary constants. An important property of Pn(x) is that it is

singular at x = −1 for n non-integer. Therefore solutions of (B.1) have a singularity at,

at least one of the points x = 1 and x = −1 for n non-integer.

Taking this into account we find two series solutions of the form:

y0(x) = 1 +
∞∑
m=1

[
(−1)mx2m

(
n(n− 2) · · · (n− 2m− 2)

(2m)!

)
× ((n+ 1) · · · (n+ 2m+ 1))

]
y1(x) = x+

∞∑
m=1

[
(−1)mx2m+1

(
(n− 1) · · · (n− 2m+ 1)

(2m+ 1)!

)
× ((n+ 2) · · · (n+ 2m))

]
It is interesting to note that for n an even integer, the series for y0(x) will terminate when

m = n
2
− 1 and if n is an odd integer the series y1(x) terminates when m = n+1

2
. Such

solutions are known as Legendre polynomials and the first few in normalised form are

given as:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)
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In order to generate the nth Legendre polynomial we use Rodrigues formula:

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n] (B.3)

For n an integer we construct our general solution to (B.1) by first noting that the poly-

nomials generated by (B.3) are non -singular and second, that Pn(−x) = (−1)nPn(x).

Where the latter point means Pn(x) and Pn(−x) are linearly dependent, but as (B.1) is

a second order ordinary differential equation (ODE) we require two linearly independent

solutions. Thus we denote the second solution, for n an integer as Qn(x), where Qn(x)

is non-polynomial and singular at the points x = ±1. Thus for n an integer the general

solution is of the form:

y(x) = APn(x) +BQn(x) (B.4)

where A and B are arbitrary constants.
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C Appendix C

C.1 The Fourier transform of the momentum space wavefunc-

tion

We want to calculate explicitly the Fourier transform of the following momentum wave-

function ψ(p) = 1√
π
e−p in the position representation ψ(r). We do this by first using

(6.49), which allows us to write:

ψ(r) =

(
1

2π

) 3
2
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

eir·pψ(p)dpxdpydpz (C.1)

we can convert this integral in to spherical co-ordinates with the z-axis chosen in the

direction of r [Oss13], so that r · p = |r||p| cos(θ), therefore:

ψ(r) =

(
1

2π

) 3
2
∫ 2π

0

dφ

∫ π

0

dθ sin(θ)

∫ ∞
0

p2eirp cos(θ)
1

π
1
2

e−p (C.2)

The dφ integral gives us a factor of 2π and then for dθ integral we make the substitution

v = cos(θ) , which makes the region of integration from 1 to −1, to flip the limits we

induce a minus sign and so integrating we find:

ψ(r) =

(
1

2

) 1
2 1

π

∫ ∞
0

dpp2e−p
[
eirpv

irp

]1
−1

and so we are left with the following expression:

1

2
1
2πir

∫ ∞
0

dpp
(
e−p(1−ir) − e−p(1+ir)

)
(C.3)

which can be integrated using the following relation:∫ ∞
0

dppne−βp =
n!

βn+1
, where n = 0, 1, 2, . . . (C.4)

as n = 1 and β = (1± ir) we have:

ψ(r) =
2

3
2

π(1 + r2)2
(C.5)

from which we recover (7.14).
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