INTRODUCTION

What exactly is a quantum random walk?

The term was first coined in the 1993 paper by Aharnov, Davi-
dovich and Zaguray[1], although Feynman[2] had introduced the
idea of a quantum walk many years before in 1940, except he did
not call it a quantum walk

There is both a discrete and continuous quantum random walk,
just as in the classical case

They can also be applied to an undirected graph G(V, E), which
means we can implement them as quantum algorithms

The behaviour of both the discrete and continuous quantum ran-
dom walks is very different from the classical case

DISCRETE QUANTUM WALK

The Set Up

The Walk

Discrete Time Random Walk

To implement the walk on the line we introduce a coin space H.
and a position space H,, , so our total spaceis H = H, & He,
where we must introduce a unitary operator U that acts on H
Where the coin space represents the states of a coin and is
spanned by the basis vectors {|R) ,|L)} . The position space
is spanned by the position states {|z) : « € Z1T°}

We first prepare the system in some initial state [)(0)) = [0) ®
|#(0)), where |¢(0)) = |L) , |R) or a superposition of the two
We next introduce a translational shift operator S:lz+1)®
| R), which only acts on H

We then introduce our coin operator C. If we would like the
symmetric quantum walk on the line, we can choose ' =

a1
VZ\i 1

This can also be done via a different coin C' and changing our
initial condition |¢(0)) to generate the same effect.

So the dynamics of the walk is described by the unitary acting
on the initial state | (0))

[t +1)) =0 [9(8)) = (S(C @ D) [¥(0) )

which leads to the symmetrical, non-Gaussian distribution in fig-
ure 2
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Figure 1: A pictorial representation of how the discrete quantum walk
evolves. As more iterations are carried out, the “walker” can be in a su-
perposition of multiple position states. This is ultimately why the quan-
tum walker travels so much further.
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They do not have gaussian properties and they do not converge to
limiting distributions, which means it is very hard to analytically
calculate their statistical properties

The width(standard deviation) of both the distributions on the line
is found to be 0 Quant = t, which is much greater than the clas-
sical case of ¢cass = VT

Which means the walker travels much further on average from
their starting position!

It is this property of the walks that has sparked a lot of excite-
ment, especially in regards to algorithmic development for quan-
tum computers

CONTINUOUS RANDOM WALK

Map =
O’

Set Up

The continuous time random walk does not have the extra struc-
ture of the coin space H., instead its Hilbert space # is simply
the position space H,,

As in the continuous Markov process, the time is also continuous
and takes place on the graph G(V, E), except the vertices are
now the quantum states {|1) ,...,|v)}

We aim to turn our transition matrix M, in to a unitary operator

kv, a = band k is the degree of vertex a

—7v, a # b, aand b are connected by an edge 2)
a # b, a and b are not connected
The Walk
e We do this by multiplying the transition matrix by the imagi-

nary unit ¢ [4], which then turns our transition matrix M into
the Hamiltonian (a|H |b) = Mgy
Solving the Schrodinger equation

i (alb (@) = 3 (al H1b) (bla) )
b

for a given Hamiltonian, with initial condition M, = d4s

We gain the following unitary which describes the dynamics of
the walk, U = e~ *H?

Thus our walk evolves, for some initial state |1/ (0)) as follows
[¥(t)) = U(¢) [4(0))

For the walk on the line when k = 2, we get exactly the same
distribution as the discrete case(figure 2), despite their very dif-
ferent constructions

PROBABILITY DISTRIBUTIONS
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Figure 2: Probability distributions of the discrete and continuous quan-
tum and classical walks on the line, for t = 50
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GROVER’S ALGORITHM EXPERIMENTAL IMPLEMENTATION

Set Up

What Is It?

Originally discovered by Lov Grover in 1996-1997 [5]

It is a very simple , but powerful database search algorithm that
makes use of the linear superposition of states

Imagine that you have a list of N names , that are unsorted,and
you only want one of those names. Grover’s algorithm will find
the given name “marked state”, in a computational time ¢ =
O(VN)

This is remarkable, as the equivalent classical algorithm takes
a time of t = O(N)! This means that if you had a 1,000,000
unsorted names, Grover’s algorithm, on average, would find the
name after searching 1,000 names . Whereas the classical case,
would on average, have to search through at least 500,000 names!

We begin by preparing all states(elements of our database) in
a linear superposition [1)) = SN | \/—% |2), (figure 3a) where
n=w

Then we continually apply Grover’s unitary operator (7 recur-
sively to an initial state |¢/(0)) = [¢) ® |—) and then make a
measurement on the final state |1/ (¢)) after a number of steps ¢.

Where |-) = —=(|0) — [1))

Grover’s operator consists of an oracle O, which acts as a func-
tion that shifts the phase of the marked state by 7, whilst leaving

the rest unchanged (figure 3b) and a diffusion transform D, that
inverts our marked state about the mean (figure 3c)
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Figure 3: Amplitude amplification and Grover’s alogirthm at work

A Modified Version of Grover’s Algorithm

Due to the impressive properties of the algorithm, people had
tried to apply Grover’s algorithm directly to a spatial search, but
unfortunately the algorithm reverts back to a computation time
of O(N) [6]. As in a spatial search there is an additional time
cost as we move between memory locations

Ambeainis et al. [7] showed that we can use the construction of the
discrete quantum walk to give us Grover’s algorithm. In doing
this they were able to get a computation time of O(+/N log N)
for 2-dimensions and O (v/N) for 3 or more dimensions

In using the walk for this simple case, we find that it not only
enhanced computation time, but it also offered a new approach
for constructing quantum algorithms

Quantum Computers

Trapped Ion Experiment

Figure 4: Ion trap. Using electromagnetic fields and light to confine,
control, and measure the quantum state of beryllium ions.

To effectively implement the walks, we must be able to design a
quantum computer

There are several different types of experimental set ups , from
nuclear magnetic resonance(NMR), optical photon computer,
harmonic oscillator computer, ion traps and many others [8]

We specifically focus on ion trapping, due to it’s similarities to
the discrete walk and recent successes [9]

We begin with a single Beryllium ion Be™ confined in a coaxial
resonator radio frequency ion trap

Next we create the unitary equation(1), by applying a sequence
of four Raman beam pulses, to create a superposition state |1)) =
\%ﬂa) [{) + |—a) |1)) , where |a) are the coherent states

Then we measure the internal state of the ion, with the measure-
ment operator M = eFiP 92, where ipos is the Hamiltonian,
which Hamiltonian we use is dependent on the internal state of
the system. We then measure the internal state again

If decoherence has effected the ion, we revert back to the classical
walk. If there is no decoherence, then we get the quantum walk.

[10]
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